583 research outputs found

    Py2Cy: A Genetic Improvement Tool To Speed Up Python

    Get PDF
    Due to its ease of use and wide range of custom libraries, Python has quickly gained popularity and is used by a wide range of developers all over the world. While Python allows for fast writing of source code, the resulting programs are slow to execute when compared to programs written in other programming languages like C. One of the reasons for its slow execution time is the dynamic typing of variables. Cython is an extension to Python, which can achieve execution speed-ups by compiler optimization. One possibility for improvements is the use of static typing, which can be added to Python scripts by developers. To alleviate the need for manual effort, we create Py2Cy, a Genetic Improvement tool for automatically converting Python scripts to statically typed Cython scripts. To show the feasibility of improving runtime with Py2Cy, we optimize a Python script for generating Fibonacci numbers. The results show that Py2Cy is able to speed up the execution time by up to a factor of 18

    Nonparametric Methods in Astronomy: Think, Regress, Observe -- Pick Any Three

    Get PDF
    Telescopes are much more expensive than astronomers, so it is essential to minimize required sample sizes by using the most data-efficient statistical methods possible. However, the most commonly used model-independent techniques for finding the relationship between two variables in astronomy are flawed. In the worst case they can lead without warning to subtly yet catastrophically wrong results, and even in the best case they require more data than necessary. Unfortunately, there is no single best technique for nonparametric regression. Instead, we provide a guide for how astronomers can choose the best method for their specific problem and provide a python library with both wrappers for the most useful existing algorithms and implementations of two new algorithms developed here.Comment: 19 pages, PAS

    Beyond XSPEC: Towards Highly Configurable Analysis

    Full text link
    We present a quantitative comparison between software features of the defacto standard X-ray spectral analysis tool, XSPEC, and ISIS, the Interactive Spectral Interpretation System. Our emphasis is on customized analysis, with ISIS offered as a strong example of configurable software. While noting that XSPEC has been of immense value to astronomers, and that its scientific core is moderately extensible--most commonly via the inclusion of user contributed "local models"--we identify a series of limitations with its use beyond conventional spectral modeling. We argue that from the viewpoint of the astronomical user, the XSPEC internal structure presents a Black Box Problem, with many of its important features hidden from the top-level interface, thus discouraging user customization. Drawing from examples in custom modeling, numerical analysis, parallel computation, visualization, data management, and automated code generation, we show how a numerically scriptable, modular, and extensible analysis platform such as ISIS facilitates many forms of advanced astrophysical inquiry.Comment: Accepted by PASP, for July 2008 (15 pages

    MaLeS: A Framework for Automatic Tuning of Automated Theorem Provers

    Full text link
    MaLeS is an automatic tuning framework for automated theorem provers. It provides solutions for both the strategy finding as well as the strategy scheduling problem. This paper describes the tool and the methods used in it, and evaluates its performance on three automated theorem provers: E, LEO-II and Satallax. An evaluation on a subset of the TPTP library problems shows that on average a MaLeS-tuned prover solves 8.67% more problems than the prover with its default settings
    • …
    corecore