13,445 research outputs found

    Performance Analysis of Transactional Traffic in Mobile Ad-hoc Networks

    Get PDF
    Mobile Ad Hoc networks (MANETs) present unique challenge to new protocol design, especially in scenarios where nodes are highly mobile. Routing protocols performance is essential to the performance of wireless networks especially in mobile ad-hoc scenarios. The development of new routing protocols requires com- paring them against well-known protocols in various simulation environments. The protocols should be analysed under realistic conditions including, but not limited to, representative data transmission models, limited buffer space for data transmission, sensible simulation area and transmission range combination, and realistic moving patterns of the mobiles nodes. Furthermore, application traffic like transactional application traffic has not been investigated for domain-specific MANETs scenarios. Overall, there are not enough performance comparison work in the past literatures. This thesis presents extensive performance comparison among MANETs comparing transactional traffic including both highly-dynamic environment as well as low-mobility cases

    Performance Evaluation of AODV Protocol Using NS2 Simulator

    Get PDF
    Mobile ad hoc networks (MANETs) represent complex distributed systems that comprise wireless mobile nodes which can dynamically self-organize into arbitrary and temporary, �ad-hoc� network topologies. This allows people and devices to seamlessly internetwork in areas with no pre-existing communication infrastructure. One interesting research area in MANET is routing. Routing in the MANETs is a challenging task and has received a tremendous amount of attention from researchers. This has led to development of many different routing protocols for MANETs. A mobile node is a collection point in the network which uses a particular protocol to forward data from source to destination. The nodes are free to move about and organize themselves into a network. The requirement of routing protocol is to send and receive information among the nodes with best suited path with the minimum delay. Correct and efficient route establishment between a pair of nodes is the primary goal of routing protocol. This paper is a simulation based analysis of Ad hoc on demand Distance Vector (AODV). The mobility models used in this work is Random Waypoint using network simulation tool NS2. The results presented in this work illustrate the performance of AODV routing protocols in an ad hoc environment

    Performance Analysis of Mobile Ad Hoc Network Routing Protocols Using ns-3 Simulations

    Get PDF
    Mobile ad hoc networks (MANETs) consist of mobile nodes that can communicate with each other through wireless links without reliance on any infrastructure. The dynamic topology of MANETs poses a significant challenge for the design of routing protocols. Many routing protocols have been developed to discover routes in MANETs through various mechanisms such as source, distance vector, and link state routing. In this thesis, we present a comprehensive performance comparison of several prominent MANET routing protocols. The protocols studied are Destination-Sequenced Distance-Vector (DSDV), Optimized Link State Routing (OLSR), Ad Hoc On-Demand Distance Vector protocol (AODV), and Dynamic Source Routing (DSR). We consider a range of network dynamicity and node density, model three mobility models: Steady-State Random Waypoint (SS-RWP), Gauss-Markov (G-M), and Lévy Walk, and use ns-3 to evaluate their performance on metrics such as packet delivery ratio, end-to-end delay, and routing overhead. We believe this study will be helpful for the understanding of mobile routing dynamics, the improvement of current MANET routing protocols, and the development of new protocols

    Classification and Comparative Study of Routing Techniques in Adhoc Wireless Networks

    Get PDF
    Wireless systems have been in use since 1980s. We have seen their evolutions to first, second and third generation's wireless systems. Wireless systems operate with the aid of a centralized supporting structure such as an access point. These access points assist the wireless users to keep connected with the wireless system, when they roam from one place to the other. The presence of a fixed supporting structure limits the adaptability of wireless systems. In other words, the technology cannot work effectively in places where there is no fixed infrastructure. Future generation wireless systems will require easy and quick deployment of wireless networks. This quick network deployment is not possible with the Infrastructured wireless systems. Recent advancements such as Bluetooth introduced a new type of wireless systems known as ad-hoc networks. Ad-hoc networks or "short live" networks operate in the absence of fixed infrastructure. They offer quick and easy network deployment in situations where it is not possible otherwise. Ad-hoc is a Latin word, which means "for this or for this only." Mobile ad-hoc network is an autonomous system of mobile nodes connected by wireless links; each node operates as an end system and a router for all other nodes in the network. Nodes in ad-hoc network are free to move and organize themselves in an arbitrary fashion. Each user is free to roam about while communication with others. The path between each pair of the users may have multiple links and the radio between them can be heterogeneous. This allows an association of various links to be a part of the same network. A mobile ad-hoc network is a collection of mobile nodes forming an ad-hoc network without the assistance of any centralized structures. These networks introduced a new art of network establishment and can be well suited for an environment where either the infrastructure is lost or where deploy an infrastructure is not very cost effective. The popular IEEE 802.11 "WI-FI" protocol is capable of providing ad-hoc network facilities at low level, when no access point is available. However in this case, the nodes are limited to send and receive information but do not route anything across the network. Ad-hoc networks can operate in a standalone fashion or could possibly be connected to a larger network such as the Internet. An ad-hoc network has certain characteristics, which imposes new demands on the routing protocol. The most important characteristic is the dynamic topology, which is a consequence of node mobility. Nodes can change position quite frequently; the nodes in an ad-hoc network can consist of laptops and personal digital assistants and are often very limited in resources such as CPU power, storage capacity, battery power and bandwidth. This means that the routing protocol should try to minimize control traffic, such as periodic update messages. The Internet Engineering Task Force currently has a working group named Mobile Ad-hoc Networks that is working on routing specifications for ad-hoc networks. This M.Phill thesis evaluates some of the protocols put forth by the working group. This evaluation is done by means of simulation using Network simulator 2 from Berkeley. This work aims at classification of the existing routing protocols of adhoc wireless networks using some definite parameters. After classification of routing protocols of adhoc wireless network, their comparative study was undertaken in order to yield category wise distribution. Furthermore performance evaluation of these protocols was carried out by employing different parameters like fading models, mobility models, traffic patterns etc using the network simulator NS-2 Hence I explore and evaluate different methods for validation of ad hoc routing protocols which are used to set up forwarding paths in spontaneous networks of mobile/Adhoc devices to accomplish the above mentioned comparative study and classification

    Route duration improvement in wireless sensor and actuator networks based on mobility parameters and flooding control

    Get PDF
    Mobility of nodes is one of the main causes of broken links in wireless networks. Although several theoretical models for links and routes selection have been proposed in the literature, so far little effort has been made to apply them to the existing routing protocols. In this article, a decision tree has been incorporated in a reactive routing protocol in order to select the most long-lived routes. The decision tree is based on nodes ’ mobility parameters typically considered by the theoretical models, such as distance between nodes, relative speed, and nodes ’ directions. The flooding techniques used within the routing protocols for the routing discovery procedures cause a massive usage of control packets which in turn has negative impact on the performance of the networks. So, an improved flooding control is presented in this article that enhances the performance of the proposed route selection based on a decision tree, in turn reducing overheads and the power consumption caused by the control packets. These two proposed approaches have been implemented over a widely used reactive routing protocol such as Ad Hoc On-Demand Distance Vector (AODV) to obtain performance results using Network Simulator 2 simulation tool. The performances of the proposed approaches have been compared with that of the AODV implementation in terms of general performance and path duration. The simulation results show that the proposed route selection significantly improves the results of AOD

    A Reverse AODV Routing Protocol in Ad Hoc Mobile Networks

    Full text link
    Abstract. In mobile ad hoc networks, mobile devices wander autonomously for the use of wireless links and dynamically varying network topology. AODV (Ad-hoc on-demand Distance vector routing) is a representative among the most widely studied on-demand ad hoc routing protocols. Previous protocols have shown some shortcomings on performance. AODV and most of the on-demand ad hoc routing protocols use single route reply along reverse path. Rapid change of topology causes that the route reply could not arrive to the source node, i.e. after a source node sends several route request messages, the node obtains a reply message, especially on high speed mobility. This increases both in communication delay and power consumption as well as decrease in packet delivery ratio. To avoid these problems, we propose a reverse AODV which tries multiple route replies. The extended AODV is called reverse AODV (R-AODV), which has a novel aspect compared to other on-demand routing protocols on Ad-hoc Networks: it reduces path fail correction messages and ob-tains better performance than the AODV and other protocols have. We design the R-AODV protocol and implement simulation models using NS-2. Simula-tion results show that the reverse AODV provides good experimental results on packet delivery ratio, power consumption and communication delay

    A performance study of routing protocols for mobile grid environment

    Get PDF
    Integration of mobile wireless consumer devices into the Grid initially seems unlikely due to limitation such as CPU performance,small secondary storage, heightened battery consumption sensitivity and unreliable low-bandwidth communication. The current grid architecture and algorithm also do not take into account the mobile computing environment since mobile devices have not been seriously considered as valid computing resources or interfaces in grid communities. This paper presents the results of simulation done in identifying a suitable ad hoc routing protocol that can be used for the target grid application in mobile environment. The simulation comparing three ad hoc routing protocols named DSDV, DSR and AODV
    corecore