3,365 research outputs found

    CSL model checking of Deterministic and Stochastic Petri Nets

    Get PDF
    Deterministic and Stochastic Petri Nets (DSPNs) are a widely used high-level formalism for modeling discrete-event systems where events may occur either without consuming time, after a deterministic time, or after an exponentially distributed time. The underlying process dened by DSPNs, under certain restrictions, corresponds to a class of Markov Regenerative Stochastic Processes (MRGP). In this paper, we investigate the use of CSL (Continuous Stochastic Logic) to express probabilistic properties, such a time-bounded until and time-bounded next, at the DSPN level. The verication of such properties requires the solution of the steady-state and transient probabilities of the underlying MRGP. We also address a number of semantic issues regarding the application of CSL on MRGP and provide numerical model checking algorithms for this logic. A prototype model checker, based on SPNica, is also described

    Petri nets for systems and synthetic biology

    Get PDF
    We give a description of a Petri net-based framework for modelling and analysing biochemical pathways, which uniÂŻes the qualita- tive, stochastic and continuous paradigms. Each perspective adds its con- tribution to the understanding of the system, thus the three approaches do not compete, but complement each other. We illustrate our approach by applying it to an extended model of the three stage cascade, which forms the core of the ERK signal transduction pathway. Consequently our focus is on transient behaviour analysis. We demonstrate how quali- tative descriptions are abstractions over stochastic or continuous descrip- tions, and show that the stochastic and continuous models approximate each other. Although our framework is based on Petri nets, it can be applied more widely to other formalisms which are used to model and analyse biochemical networks

    Hybrid performance modelling of opportunistic networks

    Get PDF
    We demonstrate the modelling of opportunistic networks using the process algebra stochastic HYPE. Network traffic is modelled as continuous flows, contact between nodes in the network is modelled stochastically, and instantaneous decisions are modelled as discrete events. Our model describes a network of stationary video sensors with a mobile ferry which collects data from the sensors and delivers it to the base station. We consider different mobility models and different buffer sizes for the ferries. This case study illustrates the flexibility and expressive power of stochastic HYPE. We also discuss the software that enables us to describe stochastic HYPE models and simulate them.Comment: In Proceedings QAPL 2012, arXiv:1207.055

    Matrix-geometric solution of infinite stochastic Petri nets

    Get PDF
    We characterize a class of stochastic Petri nets that can be solved using matrix geometric techniques. Advantages of such on approach are that very efficient mathematical technique become available for practical usage, as well as that the problem of large state spaces can be circumvented. We first characterize the class of stochastic Petri nets of interest by formally defining a number of constraints that have to be fulfilled. We then discuss the matrix geometric solution technique that can be employed and present some boundary conditions on tool support. We illustrate the practical usage of the class of stochastic Petri nets with two examples: a queueing system with delayed service and a model of connection management in ATM network

    Model-based dependability analysis : state-of-the-art, challenges and future outlook

    Get PDF
    Abstract: Over the past two decades, the study of model-based dependability analysis has gathered significant research interest. Different approaches have been developed to automate and address various limitations of classical dependability techniques to contend with the increasing complexity and challenges of modern safety-critical system. Two leading paradigms have emerged, one which constructs predictive system failure models from component failure models compositionally using the topology of the system. The other utilizes design models - typically state automata - to explore system behaviour through fault injection. This paper reviews a number of prominent techniques under these two paradigms, and provides an insight into their working mechanism, applicability, strengths and challenges, as well as recent developments within these fields. We also discuss the emerging trends on integrated approaches and advanced analysis capabilities. Lastly, we outline the future outlook for model-based dependability analysis

    Analysis of signalling pathways using continuous time Markov chains

    Get PDF
    We describe a quantitative modelling and analysis approach for signal transduction networks. We illustrate the approach with an example, the RKIP inhibited ERK pathway [CSK+03]. Our models are high level descriptions of continuous time Markov chains: proteins are modelled by synchronous processes and reactions by transitions. Concentrations are modelled by discrete, abstract quantities. The main advantage of our approach is that using a (continuous time) stochastic logic and the PRISM model checker, we can perform quantitative analysis such as what is the probability that if a concentration reaches a certain level, it will remain at that level thereafter? or how does varying a given reaction rate affect that probability? We also perform standard simulations and compare our results with a traditional ordinary differential equation model. An interesting result is that for the example pathway, only a small number of discrete data values is required to render the simulations practically indistinguishable

    Reliability modelling of PEM fuel cells with hybrid Petri nets

    Get PDF
    In this paper, a novel model for dynamic reliability analysis of a PEM fuel cell system is developed using Modelica language in order to account for multi-state dynamics and aging. The modelling approach constitutes the combination of physical and stochastic sub-models with shared variables. The physical model consist of deterministic calculations of the system state described by variables such as temperature, pressure, mass flow rates and voltage output. Additionally, estimated component degradation rates are also taken into account. The non-deterministic model, on the other hand, is implemented with stochastic Petri nets which represent different events that can occur at random times during fuel cell lifetime. A case study of effects of a cooling system on fuel cell performance was investigated. Monte Carlo simulations of the process resulted in a distribution of system parameters, thus providing an estimate of best and worst scenarios of a fuel cell lifetime

    MathMC: A mathematica-based tool for CSL model checking of deterministic and stochastic Petri nets

    Get PDF
    Deterministic and Stochastic Petri Nets (DSPNs) are a widely used high-level formalism for modeling discreteevent systems where events may occur either without consuming time, after a deterministic time, or after an exponentially distributed time. CSL (Continuous Stochastic Logic) is a (branching) temporal logic developed to express probabilistic properties in continuous time Markov chains (CTMCs). In this paper we present a Mathematica-based tool that implements recent developments for model checking CSL style properties on DSPNs. Furthermore, as a consequence of the type of process underlying DSPNs (a superset of Markovian processes), we are also able to check CSL properties of Generalized Stochastic Petri Nets (GSPNs) and labeled CTMCs

    Dependability checking with StoCharts: Is train radio reliable enough for trains?

    Get PDF
    Performance, dependability and quality of service (QoS) are prime aspects of the UML modelling domain. To capture these aspects effectively in the design phase, we have recently proposed STOCHARTS, a conservative extension of UML statechart diagrams. In this paper, we apply the STOCHART formalism to a safety critical design problem. We model a part of the European Train Control System specification, focusing on the risks of wireless communication failures in future high-speed cross-European trains. Stochastic model checking with the model checker PROVER enables us to derive constraints under which the central quality requirements are satisfied by the STOCHART model. The paper illustrates the flexibility and maturity of STOCHARTS to model real problems in safety critical system design
    • …
    corecore