220,964 research outputs found

    Multi-Scale Spatially Weighted Local Histograms in O(1)

    Full text link
    Weighting pixel contribution considering its location is a key feature in many fundamental image processing tasks including filtering, object modeling and distance matching. Several techniques have been proposed that incorporate Spatial information to increase the accuracy and boost the performance of detection, tracking and recognition systems at the cost of speed. But, it is still not clear how to efficiently ex- tract weighted local histograms in constant time using integral histogram. This paper presents a novel algorithm to compute accurately multi-scale Spatially weighted local histograms in constant time using Weighted Integral Histogram (SWIH) for fast search. We applied our spatially weighted integral histogram approach for fast tracking and obtained more accurate and robust target localization result in comparison with using plain histogram.Comment: 5 pages, 7 figure

    Comparison of different integral histogram based tracking algorithms

    Get PDF
    Object tracking is an important subject in computer vision with a wide range of applications – security and surveillance, motion-based recognition, driver assistance systems, and human-computer interaction. The proliferation of high-powered computers, the availability of high quality and inexpensive video cameras, and the increasing need for automated video analysis have generated a great deal of interest in object tracking algorithms. Tracking is usually performed in the context of high-level applications that require the location and/or shape of the object in every frame. Research is being conducted in the development of object tracking algorithms over decades and a number of approaches have been proposed. These approaches differ from each other in object representation, feature selection, and modeling the shape and appearance of the object. Histogram-based tracking has been proved to be an efficient approach in many applications. Integral histogram is a novel method which allows the extraction of histograms of multiple rectangular regions in an image in a very efficient manner. A number of algorithms have used this function in their approaches in the recent years, which made an attempt to use the integral histogram in a more efficient manner. In this paper different algorithms which used this method as a part of their tracking function, are evaluated by comparing their tracking results and an effort is made to modify some of the algorithms for better performance. The sequences used for the tracking experiments are of gray scale (non-colored) and have significant shape and appearance variations for evaluating the performance of the algorithms. Extensive experimental results on these challenging sequences are presented, which demonstrate the tracking abilities of these algorithms

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Automated 3D data collection (A3DDC) for 3D building information modeling

    Get PDF

    Sensor-Based Safety Performance Assessment of Individual Construction Workers

    Get PDF
    Over the last decade, researchers have explored various technologies and methodologies to enhance worker safety at construction sites. The use of advanced sensing technologies mainly has focused on detecting and warning about safety issues by directly relying on the detection capabilities of these technologies. Until now, very little research has explored methods to quantitatively assess individual workers’ safety performance. For this, this study uses a tracking system to collect and use individuals’ location data in the proposed safety framework. A computational and analytical procedure/model was developed to quantify the safety performance of individual workers beyond detection and warning. The framework defines parameters for zone-based safety risks and establishes a zone-based safety risk model to quantify potential risks to workers. To demonstrate the model of safety analysis, the study conducted field tests at different construction sites, using various interaction scenarios. Probabilistic evaluation showed a slight underestimation and overestimation in certain cases; however, the model represented the overall safety performance of a subject quite well. Test results showed clear evidence of the model’s ability to capture safety conditions of workers in pre-identified hazard zones. The developed approach presents a way to provide visualized and quantified information as a form of safety index, which has not been available in the industry. In addition, such an automated method may present a suitable safety monitoring method that can eliminate human deployment that is expensive, error-prone, and time-consuming

    A lesson from robotics: Modeling infants as autonomous agents

    Get PDF
    While computational models are playing an increasingly important role in developmental psychology, at least one lesson from robotics is still being learned: modeling epigenetic processes often requires simulating an embodied, autonomous organism. This paper first contrasts prevailing models of infant cognition with an agent-based approach. A series of infant studies by Baillargeon (1986; Baillargeon & DeVos, 1991) is described, and an eye-movement model is then used to simulate infants' visual activity in this study. I conclude by describing three behavioral predictions of the eyemovement model, and discussing the implications of this work for infant cognition research
    • …
    corecore