78,561 research outputs found

    AN OVERVIEW OF IMAGE SEGMENTATION ALGORITHMS

    Get PDF
    Image segmentation is a puzzled problem even after four decades of research. Research on image segmentation is currently conducted in three levels. Development of image segmentation methods, evaluation of segmentation algorithms and performance and study of these evaluation methods. Hundreds of techniques have been proposed for segmentation of natural images, noisy images, medical images etc. Currently most of the researchers are evaluating the segmentation algorithms using ground truth evaluation of (Berkeley segmentation database) BSD images. In this paper an overview of various segmentation algorithms is discussed. The discussion is mainly based on the soft computing approaches used for segmentation of images without noise and noisy images and the parameters used for evaluating these algorithms. Some of these techniques used are Markov Random Field (MRF) model, Neural Network, Clustering, Particle Swarm optimization, Fuzzy Logic approach and different combinations of these soft techniques

    Segment Anything Model for Medical Image Analysis: an Experimental Study

    Full text link
    Training segmentation models for medical images continues to be challenging due to the limited availability and acquisition expense of data annotations. Segment Anything Model (SAM) is a foundation model trained on over 1 billion annotations, predominantly for natural images, that is intended to be able to segment the user-defined object of interest in an interactive manner. Despite its impressive performance on natural images, it is unclear how the model is affected when shifting to medical image domains. Here, we perform an extensive evaluation of SAM's ability to segment medical images on a collection of 11 medical imaging datasets from various modalities and anatomies. In our experiments, we generated point prompts using a standard method that simulates interactive segmentation. Experimental results show that SAM's performance based on single prompts highly varies depending on the task and the dataset, i.e., from 0.1135 for a spine MRI dataset to 0.8650 for a hip x-ray dataset, evaluated by IoU. Performance appears to be high for tasks including well-circumscribed objects with unambiguous prompts and poorer in many other scenarios such as segmentation of tumors. When multiple prompts are provided, performance improves only slightly overall, but more so for datasets where the object is not contiguous. An additional comparison to RITM showed a much better performance of SAM for one prompt but a similar performance of the two methods for a larger number of prompts. We conclude that SAM shows impressive performance for some datasets given the zero-shot learning setup but poor to moderate performance for multiple other datasets. While SAM as a model and as a learning paradigm might be impactful in the medical imaging domain, extensive research is needed to identify the proper ways of adapting it in this domain.Comment: Link to our code: https://github.com/mazurowski-lab/segment-anything-medica

    Redesigning Out-of-Distribution Detection on 3D Medical Images

    Full text link
    Detecting out-of-distribution (OOD) samples for trusted medical image segmentation remains a significant challenge. The critical issue here is the lack of a strict definition of abnormal data, which often results in artificial problem settings without measurable clinical impact. In this paper, we redesign the OOD detection problem according to the specifics of volumetric medical imaging and related downstream tasks (e.g., segmentation). We propose using the downstream model's performance as a pseudometric between images to define abnormal samples. This approach enables us to weigh different samples based on their performance impact without an explicit ID/OOD distinction. We incorporate this weighting in a new metric called Expected Performance Drop (EPD). EPD is our core contribution to the new problem design, allowing us to rank methods based on their clinical impact. We demonstrate the effectiveness of EPD-based evaluation in 11 CT and MRI OOD detection challenges

    MedicalSeg: a medical GUI application for image segmentation management

    Get PDF
    In the field of medical imaging, the division of an image into meaningful structures using image segmentation is an essential step for pre-processing analysis. Many studies have been carried out to solve the general problem of the evaluation of image segmentation results. One of the main focuses in the computer vision field is based on artificial intelligence algorithms for segmentation and classification, including machine learning and deep learning approaches. The main drawback of supervised segmentation approaches is that a large dataset of ground truth validated by medical experts is required. In this sense, many research groups have developed their segmentation approaches according to their specific needs. However, a generalised application aimed at visualizing, assessing and comparing the results of different methods facilitating the generation of a ground-truth repository is not found in recent literature. In this paper, a new graphical user interface application (MedicalSeg) for the management of medical imaging based on pre-processing and segmentation is presented. The objective is twofold, first to create a test platform for comparing segmentation approaches, and secondly to generate segmented images to create ground truths that can then be used for future purposes as artificial intelligence tools. An experimental demonstration and performance analysis discussion are presented in this paper.Peer ReviewedPostprint (published version

    Task-driven Prompt Evolution for Foundation Models

    Full text link
    Promptable foundation models, particularly Segment Anything Model (SAM), have emerged as a promising alternative to the traditional task-specific supervised learning for image segmentation. However, many evaluation studies have found that their performance on medical imaging modalities to be underwhelming compared to conventional deep learning methods. In the world of large pre-trained language and vision-language models, learning prompt from downstream tasks has achieved considerable success in improving performance. In this work, we propose a plug-and-play Prompt Optimization Technique for foundation models like SAM (SAMPOT) that utilizes the downstream segmentation task to optimize the human-provided prompt to obtain improved performance. We demonstrate the utility of SAMPOT on lung segmentation in chest X-ray images and obtain an improvement on a significant number of cases (75%\sim75\%) over human-provided initial prompts. We hope this work will lead to further investigations in the nascent field of automatic visual prompt-tuning

    Segmentation of anatomical structures of the heart based on echocardiography

    Get PDF
    Nowadays, many practical applications in the field of medical image processing require valid and reliable segmentation of images in the capacity of input data. Some of the commonly used imaging techniques are ultrasound, CT, and MRI. However, the main difference between the other medical imaging equipment and EchoCG is that it is safer, low cost, non-invasive and non-traumatic. Three-dimensional EchoCG is a non-invasive imaging modality that is complementary and supplementary to two-dimensional imaging and can be used to examine the cardiovascular function and anatomy in different medical settings. The challenging problems, presented by EchoCG image processing, such as speckle phenomena, noise, temporary non-stationarity of processes, unsharp boundaries, attenuation, etc. forced us to consider and compare existing methods and then to develop an innovative approach that can tackle the problems connected with clinical applications. Actual studies are related to the analysis and development of a cardiac parameters automatic detection system by EchoCG that will provide new data on the dynamics of changes in cardiac parameters and improve the accuracy and reliability of the diagnosis. Research study in image segmentation has highlighted the capabilities of image-based methods for medical applications. The focus of the research is both theoretical and practical aspects of the application of the methods. Some of the segmentation approaches can be interesting for the imaging and medical community. Performance evaluation is carried out by comparing the borders, obtained from the considered methods to those manually prescribed by a medical specialist. Promising results demonstrate the possibilities and the limitations of each technique for image segmentation problems. The developed approach allows: to eliminate errors in calculating the geometric parameters of the heart; perform the necessary conditions, such as speed, accuracy, reliability; build a master model that will be an indispensable assistant for operations on a beating heart

    Segmentation of anatomical structures of the heart based on echocardiography

    Get PDF
    Nowadays, many practical applications in the field of medical image processing require valid and reliable segmentation of images in the capacity of input data. Some of the commonly used imaging techniques are ultrasound, CT, and MRI. However, the main difference between the other medical imaging equipment and EchoCG is that it is safer, low cost, non-invasive and non-traumatic. Three-dimensional EchoCG is a non-invasive imaging modality that is complementary and supplementary to two-dimensional imaging and can be used to examine the cardiovascular function and anatomy in different medical settings. The challenging problems, presented by EchoCG image processing, such as speckle phenomena, noise, temporary non-stationarity of processes, unsharp boundaries, attenuation, etc. forced us to consider and compare existing methods and then to develop an innovative approach that can tackle the problems connected with clinical applications. Actual studies are related to the analysis and development of a cardiac parameters automatic detection system by EchoCG that will provide new data on the dynamics of changes in cardiac parameters and improve the accuracy and reliability of the diagnosis. Research study in image segmentation has highlighted the capabilities of image-based methods for medical applications. The focus of the research is both theoretical and practical aspects of the application of the methods. Some of the segmentation approaches can be interesting for the imaging and medical community. Performance evaluation is carried out by comparing the borders, obtained from the considered methods to those manually prescribed by a medical specialist. Promising results demonstrate the possibilities and the limitations of each technique for image segmentation problems. The developed approach allows: to eliminate errors in calculating the geometric parameters of the heart; perform the necessary conditions, such as speed, accuracy, reliability; build a master model that will be an indispensable assistant for operations on a beating heart

    Automated Segmentation of Cerebral Aneurysm Using a Novel Statistical Multiresolution Approach

    Get PDF
    Cerebral Aneurysm (CA) is a vascular disease that threatens the lives of many adults. It a ects almost 1:5 - 5% of the general population. Sub- Arachnoid Hemorrhage (SAH), resulted by a ruptured CA, has high rates of morbidity and mortality. Therefore, radiologists aim to detect it and diagnose it at an early stage, by analyzing the medical images, to prevent or reduce its damages. The analysis process is traditionally done manually. However, with the emerging of the technology, Computer-Aided Diagnosis (CAD) algorithms are adopted in the clinics to overcome the traditional process disadvantages, as the dependency of the radiologist's experience, the inter and intra observation variability, the increase in the probability of error which increases consequently with the growing number of medical images to be analyzed, and the artifacts added by the medical images' acquisition methods (i.e., MRA, CTA, PET, RA, etc.) which impedes the radiologist' s work. Due to the aforementioned reasons, many research works propose di erent segmentation approaches to automate the analysis process of detecting a CA using complementary segmentation techniques; but due to the challenging task of developing a robust reproducible reliable algorithm to detect CA regardless of its shape, size, and location from a variety of the acquisition methods, a diversity of proposed and developed approaches exist which still su er from some limitations. This thesis aims to contribute in this research area by adopting two promising techniques based on the multiresolution and statistical approaches in the Two-Dimensional (2D) domain. The rst technique is the Contourlet Transform (CT), which empowers the segmentation by extracting features not apparent in the normal image scale. While the second technique is the Hidden Markov Random Field model with Expectation Maximization (HMRF-EM), which segments the image based on the relationship of the neighboring pixels in the contourlet domain. The developed algorithm reveals promising results on the four tested Three- Dimensional Rotational Angiography (3D RA) datasets, where an objective and a subjective evaluation are carried out. For the objective evaluation, six performance metrics are adopted which are: accuracy, Dice Similarity Index (DSI), False Positive Ratio (FPR), False Negative Ratio (FNR), speci city, and sensitivity. As for the subjective evaluation, one expert and four observers with some medical background are involved to assess the segmentation visually. Both evaluations compare the segmented volumes against the ground truth data

    CrossMoDA 2021 challenge: Benchmark of Cross-Modality Domain Adaptation techniques for Vestibular Schwannoma and Cochlea Segmentation

    Full text link
    Domain Adaptation (DA) has recently raised strong interests in the medical imaging community. While a large variety of DA techniques has been proposed for image segmentation, most of these techniques have been validated either on private datasets or on small publicly available datasets. Moreover, these datasets mostly addressed single-class problems. To tackle these limitations, the Cross-Modality Domain Adaptation (crossMoDA) challenge was organised in conjunction with the 24th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2021). CrossMoDA is the first large and multi-class benchmark for unsupervised cross-modality DA. The challenge's goal is to segment two key brain structures involved in the follow-up and treatment planning of vestibular schwannoma (VS): the VS and the cochleas. Currently, the diagnosis and surveillance in patients with VS are performed using contrast-enhanced T1 (ceT1) MRI. However, there is growing interest in using non-contrast sequences such as high-resolution T2 (hrT2) MRI. Therefore, we created an unsupervised cross-modality segmentation benchmark. The training set provides annotated ceT1 (N=105) and unpaired non-annotated hrT2 (N=105). The aim was to automatically perform unilateral VS and bilateral cochlea segmentation on hrT2 as provided in the testing set (N=137). A total of 16 teams submitted their algorithm for the evaluation phase. The level of performance reached by the top-performing teams is strikingly high (best median Dice - VS:88.4%; Cochleas:85.7%) and close to full supervision (median Dice - VS:92.5%; Cochleas:87.7%). All top-performing methods made use of an image-to-image translation approach to transform the source-domain images into pseudo-target-domain images. A segmentation network was then trained using these generated images and the manual annotations provided for the source image.Comment: Submitted to Medical Image Analysi
    corecore