4,822 research outputs found

    Dynamic Physiological Partitioning on a Shared-nothing Database Cluster

    Full text link
    Traditional DBMS servers are usually over-provisioned for most of their daily workloads and, because they do not show good-enough energy proportionality, waste a lot of energy while underutilized. A cluster of small (wimpy) servers, where its size can be dynamically adjusted to the current workload, offers better energy characteristics for these workloads. Yet, data migration, necessary to balance utilization among the nodes, is a non-trivial and time-consuming task that may consume the energy saved. For this reason, a sophisticated and easy to adjust partitioning scheme fostering dynamic reorganization is needed. In this paper, we adapt a technique originally created for SMP systems, called physiological partitioning, to distribute data among nodes, that allows to easily repartition data without interrupting transactions. We dynamically partition DB tables based on the nodes' utilization and given energy constraints and compare our approach with physical partitioning and logical partitioning methods. To quantify possible energy saving and its conceivable drawback on query runtimes, we evaluate our implementation on an experimental cluster and compare the results w.r.t. performance and energy consumption. Depending on the workload, we can substantially save energy without sacrificing too much performance

    The End of a Myth: Distributed Transactions Can Scale

    Full text link
    The common wisdom is that distributed transactions do not scale. But what if distributed transactions could be made scalable using the next generation of networks and a redesign of distributed databases? There would be no need for developers anymore to worry about co-partitioning schemes to achieve decent performance. Application development would become easier as data placement would no longer determine how scalable an application is. Hardware provisioning would be simplified as the system administrator can expect a linear scale-out when adding more machines rather than some complex sub-linear function, which is highly application specific. In this paper, we present the design of our novel scalable database system NAM-DB and show that distributed transactions with the very common Snapshot Isolation guarantee can indeed scale using the next generation of RDMA-enabled network technology without any inherent bottlenecks. Our experiments with the TPC-C benchmark show that our system scales linearly to over 6.5 million new-order (14.5 million total) distributed transactions per second on 56 machines.Comment: 12 page

    Sharing Computer Network Logs for Security and Privacy: A Motivation for New Methodologies of Anonymization

    Full text link
    Logs are one of the most fundamental resources to any security professional. It is widely recognized by the government and industry that it is both beneficial and desirable to share logs for the purpose of security research. However, the sharing is not happening or not to the degree or magnitude that is desired. Organizations are reluctant to share logs because of the risk of exposing sensitive information to potential attackers. We believe this reluctance remains high because current anonymization techniques are weak and one-size-fits-all--or better put, one size tries to fit all. We must develop standards and make anonymization available at varying levels, striking a balance between privacy and utility. Organizations have different needs and trust other organizations to different degrees. They must be able to map multiple anonymization levels with defined risks to the trust levels they share with (would-be) receivers. It is not until there are industry standards for multiple levels of anonymization that we will be able to move forward and achieve the goal of widespread sharing of logs for security researchers.Comment: 17 pages, 1 figur

    Anonymous subject identification and privacy information management in video surveillance

    Get PDF
    The widespread deployment of surveillance cameras has raised serious privacy concerns, and many privacy-enhancing schemes have been recently proposed to automatically redact images of selected individuals in the surveillance video for protection. Of equal importance are the privacy and efficiency of techniques to first, identify those individuals for privacy protection and second, provide access to original surveillance video contents for security analysis. In this paper, we propose an anonymous subject identification and privacy data management system to be used in privacy-aware video surveillance. The anonymous subject identification system uses iris patterns to identify individuals for privacy protection. Anonymity of the iris-matching process is guaranteed through the use of a garbled-circuit (GC)-based iris matching protocol. A novel GC complexity reduction scheme is proposed by simplifying the iris masking process in the protocol. A user-centric privacy information management system is also proposed that allows subjects to anonymously access their privacy information via their iris patterns. The system is composed of two encrypted-domain protocols: The privacy information encryption protocol encrypts the original video records using the iris pattern acquired during the subject identification phase; the privacy information retrieval protocol allows the video records to be anonymously retrieved through a GC-based iris pattern matching process. Experimental results on a public iris biometric database demonstrate the validity of our framework

    Consideration of interdependencies in the relational database system, and, A proposal and evaluation of an expert system for the relational database structure

    Full text link
    This thesis addresses the issue of interdependencies in Distributed and non-Distributed Relational Database Management Systems and proposes a design and development of an Expert System to manage and enhance the current available Database Structures; In the first part, we study, compare and evaluate the interdependencies found in the operating environment relevant to the Distributed Relational structure. Hardware and software configurations are grouped and compared in an attempt to understand the interdependencies of the system so that an optimal configuration may be obtained; In the second part, we designed and developed an Expert System configuration with ease of use and functionality as foremost concerns. The system reuses the transient tables used to service queries to achieve a performance improvement without explicit user knowledge. Basic fragmentation principles are also used to aid in performance by implicitly restructuring the tables within a database to balance access time. (Abstract shortened with permission of author.)

    Speedy Transactions in Multicore In-Memory Databases

    Get PDF
    Silo is a new in-memory database that achieves excellent performance and scalability on modern multicore machines. Silo was designed from the ground up to use system memory and caches efficiently. For instance, it avoids all centralized contention points, including that of centralized transaction ID assignment. Silo's key contribution is a commit protocol based on optimistic concurrency control that provides serializability while avoiding all shared-memory writes for records that were only read. Though this might seem to complicate the enforcement of a serial order, correct logging and recovery is provided by linking periodically-updated epochs with the commit protocol. Silo provides the same guarantees as any serializable database without unnecessary scalability bottlenecks or much additional latency. Silo achieves almost 700,000 transactions per second on a standard TPC-C workload mix on a 32-core machine, as well as near-linear scalability. Considered per core, this is several times higher than previously reported results.Engineering and Applied Science

    Instant restore after a media failure

    Full text link
    Media failures usually leave database systems unavailable for several hours until recovery is complete, especially in applications with large devices and high transaction volume. Previous work introduced a technique called single-pass restore, which increases restore bandwidth and thus substantially decreases time to repair. Instant restore goes further as it permits read/write access to any data on a device undergoing restore--even data not yet restored--by restoring individual data segments on demand. Thus, the restore process is guided primarily by the needs of applications, and the observed mean time to repair is effectively reduced from several hours to a few seconds. This paper presents an implementation and evaluation of instant restore. The technique is incrementally implemented on a system starting with the traditional ARIES design for logging and recovery. Experiments show that the transaction latency perceived after a media failure can be cut down to less than a second and that the overhead imposed by the technique on normal processing is minimal. The net effect is that a few "nines" of availability are added to the system using simple and low-overhead software techniques
    corecore