3,806 research outputs found

    Preparing HPC Applications for the Exascale Era: A Decoupling Strategy

    Full text link
    Production-quality parallel applications are often a mixture of diverse operations, such as computation- and communication-intensive, regular and irregular, tightly coupled and loosely linked operations. In conventional construction of parallel applications, each process performs all the operations, which might result inefficient and seriously limit scalability, especially at large scale. We propose a decoupling strategy to improve the scalability of applications running on large-scale systems. Our strategy separates application operations onto groups of processes and enables a dataflow processing paradigm among the groups. This mechanism is effective in reducing the impact of load imbalance and increases the parallel efficiency by pipelining multiple operations. We provide a proof-of-concept implementation using MPI, the de-facto programming system on current supercomputers. We demonstrate the effectiveness of this strategy by decoupling the reduce, particle communication, halo exchange and I/O operations in a set of scientific and data-analytics applications. A performance evaluation on 8,192 processes of a Cray XC40 supercomputer shows that the proposed approach can achieve up to 4x performance improvement.Comment: The 46th International Conference on Parallel Processing (ICPP-2017

    Solving large-scale dynamic systems using band Lanczos method in Rockwell NASTRAN on CRAY X-MP

    Get PDF
    The improved cost effectiveness using better models, more accurate and faster algorithms and large scale computing offers more representative dynamic analyses. The band Lanczos eigen-solution method was implemented in Rockwell's version of 1984 COSMIC-released NASTRAN finite element structural analysis computer program to effectively solve for structural vibration modes including those of large complex systems exceeding 10,000 degrees of freedom. The Lanczos vectors were re-orthogonalized locally using the Lanczos Method and globally using the modified Gram-Schmidt method for sweeping rigid-body modes and previously generated modes and Lanczos vectors. The truncated band matrix was solved for vibration frequencies and mode shapes using Givens rotations. Numerical examples are included to demonstrate the cost effectiveness and accuracy of the method as implemented in ROCKWELL NASTRAN. The CRAY version is based on RPK's COSMIC/NASTRAN. The band Lanczos method was more reliable and accurate and converged faster than the single vector Lanczos Method. The band Lanczos method was comparable to the subspace iteration method which was a block version of the inverse power method. However, the subspace matrix tended to be fully populated in the case of subspace iteration and not as sparse as a band matrix

    Computational methods and software systems for dynamics and control of large space structures

    Get PDF
    Two key areas of crucial importance to the computer-based simulation of large space structures are discussed. The first area involves multibody dynamics (MBD) of flexible space structures, with applications directed to deployment, construction, and maneuvering. The second area deals with advanced software systems, with emphasis on parallel processing. The latest research thrust in the second area involves massively parallel computers

    CSM Testbed Development and Large-Scale Structural Applications

    Get PDF
    A research activity called Computational Structural Mechanics (CSM) conducted at the NASA Langley Research Center is described. This activity is developing advanced structural analysis and computational methods that exploit high-performance computers. Methods are developed in the framework of the CSM Testbed software system and applied to representative complex structural analysis problems from the aerospace industry. An overview of the CSM Testbed methods development environment is presented and some new numerical methods developed on a CRAY-2 are described. Selected application studies performed on the NAS CRAY-2 are also summarized
    corecore