4 research outputs found

    A packet delivery cost analysis of a flow-enabled proxy NEMO scheme in a distributed mobility anchoring environment

    Get PDF
    DMM (Distributed Mobility Management) is a present elective worldview for creating a mobility management scheme to discourse the centralized issues in present IP-based mobile environments. The main reason is to enable these schemes to adapt to the present increment in the number of mobile operators, as well as mobile information traffic size, just as the pattern in the mobile Internet towards Industry 4.0 in a flat architecture. Until this point, the advancement of schemes dependent on the DMM-based method is still at fundamental phases in the Internet Engineering Task Force (IETF), as well as there is no present standard set up. With the point of taking advantage of utilizing different interfaces all at once, this paper proposes an enhanced Flow-enabled Proxy NEMO scheme in a Distributed Mobility Anchoring (FPNEMO-DMA) environment. Besides, a mathematical approach is advanced to assess the performance of the proposed FPNEMO-DMA scheme and benchmark with the existing Nemo Basic Support Protocol (NBSP) and Proxy NEMO. Index Termsโ€”Distributed mobility anchoring; NBSP; Proxy NEMO; Flow mobility

    Performance evaluation of multi-interfaced fast handoff scheme for PNEMO Environment

    Get PDF
    Mobility management is classified into two parts such as location management and handoff management. The earlier one concentrates on location update whereas the later one manages continuous Internet connectivity while the Mobile Router (MR) changes its single point of attachment to the network. Therefore, frequent movement of the MR is one of the significant characteristics in Network Mobility (NEMO) environment. Because, in accordance with the standard Network Mobility Basic Support Protocol (NEMO BSP), the MR utilizes single Interface to attach to the access link. MR requires changing its Care of Address (CoA) when it moves among different wireless access networks. As a result, it can directly influence the performance of the mobility management protocols during inter technology handoff of multi-interfaced MR. This paper proposed a multi-interfaced fast handoff scheme in Proxy NEMO (PNEMO) environment. After that, it represents a comparative analysis between the proposed multiinterfaced scheme, NEMO BSP and the PNEMO scheme respectively. The performance disparities of these schemes are estimated and analyzed via both numerical and simulation approaches. The simulation is performed through NS-3 network simulator. The performance metrics estimated for evaluation are mainly handoff delay and packet loss. It has been perceived that, the proposed scheme performs better compared to the PNEMO scheme and NEMO BSP

    Performance Evaluation of Improved Fast PMIPv6-Based Network Mobility for Intelligent Transportation Systems

    No full text
    The network mobility basic support (NEMO BS) protocol has been investigated to provide Internet connectivity for a group of nodes, which is suitable for intelligent transportation systems (ITS) applications. NEMO BS often increases the traffic load and handover latency because it is designed on the basis of mobile Internet protocol version 6 (MIPv6). Therefore, schemes combining proxy MIPv6 with NEMO (P-NEMO) have emerged to solve these problems. However, these schemes still suffer from packet loss and long handover latency during handover. Fast P-NEMO (FP-NEMO) has emerged to prevent these problems. Although the FP-NEMO accelerates handover, it can cause a serious tunneling burden between the mobile access gateways (MAGs) during handover. This problem becomes more critical as the traffic between the MAGs increases. Therefore, we propose a scheme for designing an improved FP-NEMO (IFP-NEMO) to eliminate the tunneling burden by registering a new address in advance. When the registration is completed before the layer 2 handover, the packets are forwarded to the new MAG directly and thereby the IFP-NEMO avoids the use of the tunnel between the MAGs during handover. For the evaluation of the performance of the IFP-NEMO compared with the FP-NEMO, we develop an analytical framework for fast handovers on the basis of P-NEMO. Finally, we demonstrate that the IFP-NEMO outperforms the FP-NEMO through numerical results. ยฉ 2013 JCN.FALS

    Performance evaluation of improved fast PMIPv6-based network mobility for intelligent transportation systems

    No full text
    corecore