1,233 research outputs found

    Democratizing machine learning

    Get PDF
    Modelle des maschinellen Lernens sind zunehmend in der Gesellschaft verankert, oft in Form von automatisierten Entscheidungsprozessen. Ein wesentlicher Grund dafür ist die verbesserte Zugänglichkeit von Daten, aber auch von Toolkits für maschinelles Lernen, die den Zugang zu Methoden des maschinellen Lernens für Nicht-Experten ermöglichen. Diese Arbeit umfasst mehrere Beiträge zur Demokratisierung des Zugangs zum maschinellem Lernen, mit dem Ziel, einem breiterem Publikum Zugang zu diesen Technologien zu er- möglichen. Die Beiträge in diesem Manuskript stammen aus mehreren Bereichen innerhalb dieses weiten Gebiets. Ein großer Teil ist dem Bereich des automatisierten maschinellen Lernens (AutoML) und der Hyperparameter-Optimierung gewidmet, mit dem Ziel, die oft mühsame Aufgabe, ein optimales Vorhersagemodell für einen gegebenen Datensatz zu finden, zu vereinfachen. Dieser Prozess besteht meist darin ein für vom Benutzer vorgegebene Leistungsmetrik(en) optimales Modell zu finden. Oft kann dieser Prozess durch Lernen aus vorhergehenden Experimenten verbessert oder beschleunigt werden. In dieser Arbeit werden drei solcher Methoden vorgestellt, die entweder darauf abzielen, eine feste Menge möglicher Hyperparameterkonfigurationen zu erhalten, die wahrscheinlich gute Lösungen für jeden neuen Datensatz enthalten, oder Eigenschaften der Datensätze zu nutzen, um neue Konfigurationen vorzuschlagen. Darüber hinaus wird eine Sammlung solcher erforderlichen Metadaten zu den Experimenten vorgestellt, und es wird gezeigt, wie solche Metadaten für die Entwicklung und als Testumgebung für neue Hyperparameter- Optimierungsmethoden verwendet werden können. Die weite Verbreitung von ML-Modellen in vielen Bereichen der Gesellschaft erfordert gleichzeitig eine genauere Untersuchung der Art und Weise, wie aus Modellen abgeleitete automatisierte Entscheidungen die Gesellschaft formen, und ob sie möglicherweise Individuen oder einzelne Bevölkerungsgruppen benachteiligen. In dieser Arbeit wird daher ein AutoML-Tool vorgestellt, das es ermöglicht, solche Überlegungen in die Suche nach einem optimalen Modell miteinzubeziehen. Diese Forderung nach Fairness wirft gleichzeitig die Frage auf, ob die Fairness eines Modells zuverlässig geschätzt werden kann, was in einem weiteren Beitrag in dieser Arbeit untersucht wird. Da der Zugang zu Methoden des maschinellen Lernens auch stark vom Zugang zu Software und Toolboxen abhängt, sind mehrere Beiträge in Form von Software Teil dieser Arbeit. Das R-Paket mlr3pipelines ermöglicht die Einbettung von Modellen in sogenan- nte Machine Learning Pipelines, die Vor- und Nachverarbeitungsschritte enthalten, die im maschinellen Lernen und AutoML häufig benötigt werden. Das mlr3fairness R-Paket hingegen ermöglicht es dem Benutzer, Modelle auf potentielle Benachteiligung hin zu über- prüfen und diese durch verschiedene Techniken zu reduzieren. Eine dieser Techniken, multi-calibration wurde darüberhinaus als seperate Software veröffentlicht.Machine learning artifacts are increasingly embedded in society, often in the form of automated decision-making processes. One major reason for this, along with methodological improvements, is the increasing accessibility of data but also machine learning toolkits that enable access to machine learning methodology for non-experts. The core focus of this thesis is exactly this – democratizing access to machine learning in order to enable a wider audience to benefit from its potential. Contributions in this manuscript stem from several different areas within this broader area. A major section is dedicated to the field of automated machine learning (AutoML) with the goal to abstract away the tedious task of obtaining an optimal predictive model for a given dataset. This process mostly consists of finding said optimal model, often through hyperparameter optimization, while the user in turn only selects the appropriate performance metric(s) and validates the resulting models. This process can be improved or sped up by learning from previous experiments. Three such methods one with the goal to obtain a fixed set of possible hyperparameter configurations that likely contain good solutions for any new dataset and two using dataset characteristics to propose new configurations are presented in this thesis. It furthermore presents a collection of required experiment metadata and how such meta-data can be used for the development and as a test bed for new hyperparameter optimization methods. The pervasion of models derived from ML in many aspects of society simultaneously calls for increased scrutiny with respect to how such models shape society and the eventual biases they exhibit. Therefore, this thesis presents an AutoML tool that allows incorporating fairness considerations into the search for an optimal model. This requirement for fairness simultaneously poses the question of whether we can reliably estimate a model’s fairness, which is studied in a further contribution in this thesis. Since access to machine learning methods also heavily depends on access to software and toolboxes, several contributions in the form of software are part of this thesis. The mlr3pipelines R package allows for embedding models in so-called machine learning pipelines that include pre- and postprocessing steps often required in machine learning and AutoML. The mlr3fairness R package on the other hand enables users to audit models for potential biases as well as reduce those biases through different debiasing techniques. One such technique, multi-calibration is published as a separate software package, mcboost

    Query optimizers based on machine learning techniques

    Get PDF
    Dissertação de mestrado integrado em Engenharia InformáticaQuery optimizers are considered one of the most relevant and sophisticated components in a database management system. However, despite currently producing nearly optimal results, optimizers rely on statistical estimates and heuristics to reduce the search space of alternative execution plans for a single query. As a result, for more complex queries, errors may grow exponentially, often translating into sub-optimal plans resulting in less than ideal performance. Recent advances in machine learning techniques have opened new opportunities for many of the existing problems related to system optimization. This document proposes a solution built on top of PostgreSQL that learns to select the most efficient set of optimizer strategy settings for a particular query. Instead of depending entirely on the optimizer’s estimates to compare different plans under different configurations, it relies on a greedy selection algorithm that supports several types of predictive modeling techniques, from more traditional modeling techniques to a deep learning approach. The system is evaluated experimentally with the standard TPC-H and Join Order ing Benchmark workloads to measure the cost and benefits of adding machine learning capabilities to traditional query optimizers.Os otimizadores de queries são considerados um dos componentes de maior relevância e complexidade num sistema de gestão de bases de dados. No entanto, apesar de atualmente produzirem resultados quase ótimos, os otimizadores dependem do uso de estimativas estatísticas e de heurísticas para reduzir o espaço de procura de planos de execução alternativos para uma determinada query. Como resultado, para queries mais complexas, os erros podem crescer exponencialmente, o que geralmente se traduz em planos sub-ótimos, resultando num desempenho inferior ao ideal. Os recentes avanços nas técnicas de aprendizagem automática abriram novas oportunidades para muitos dos problemas existentes relacionados com otimização de sistemas. Este documento propõe uma solução construída sobre o PostgreSQL que aprende a selecionar o conjunto mais eficiente de configurações do otimizador para uma determinada query. Em vez de depender inteiramente de estimativas do otimizador para comparar planos de configurações diferentes, a solução baseia-se num algoritmo de seleção greedy que suporta vários tipos de técnicas de modelagem preditiva, desde técnicas mais tradicionais a uma abordagem de deep learning. O sistema é avaliado experimentalmente com os workloads TPC-H e Join Ordering Benchmark para medir o custo e os benefícios de adicionar aprendizagem automática a otimizadores de queries tradicionais.This work is financed by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia, within project UIDB/50014/2020

    Discovering Attention-Based Genetic Algorithms via Meta-Black-Box Optimization

    Full text link
    Genetic algorithms constitute a family of black-box optimization algorithms, which take inspiration from the principles of biological evolution. While they provide a general-purpose tool for optimization, their particular instantiations can be heuristic and motivated by loose biological intuition. In this work we explore a fundamentally different approach: Given a sufficiently flexible parametrization of the genetic operators, we discover entirely new genetic algorithms in a data-driven fashion. More specifically, we parametrize selection and mutation rate adaptation as cross- and self-attention modules and use Meta-Black-Box-Optimization to evolve their parameters on a set of diverse optimization tasks. The resulting Learned Genetic Algorithm outperforms state-of-the-art adaptive baseline genetic algorithms and generalizes far beyond its meta-training settings. The learned algorithm can be applied to previously unseen optimization problems, search dimensions & evaluation budgets. We conduct extensive analysis of the discovered operators and provide ablation experiments, which highlight the benefits of flexible module parametrization and the ability to transfer (`plug-in') the learned operators to conventional genetic algorithms.Comment: 14 pages, 31 figure

    Auto-tuning TensorFlow Threading Model for CPU Backend

    Full text link
    TensorFlow is a popular deep learning framework used by data scientists to solve a wide-range of machine learning and deep learning problems such as image classification and speech recognition. It also operates at a large scale and in heterogeneous environments --- it allows users to train neural network models or deploy them for inference using GPUs, CPUs and deep learning specific custom-designed hardware such as TPUs. Even though TensorFlow supports a variety of optimized backends, realizing the best performance using a backend may require additional efforts. For instance, getting the best performance from a CPU backend requires careful tuning of its threading model. Unfortunately, the best tuning approach used today is manual, tedious, time-consuming, and, more importantly, may not guarantee the best performance. In this paper, we develop an automatic approach, called TensorTuner, to search for optimal parameter settings of TensorFlow's threading model for CPU backends. We evaluate TensorTuner on both Eigen and Intel's MKL CPU backends using a set of neural networks from TensorFlow's benchmarking suite. Our evaluation results demonstrate that the parameter settings found by TensorTuner produce 2% to 123% performance improvement for the Eigen CPU backend and 1.5% to 28% performance improvement for the MKL CPU backend over the performance obtained using their best-known parameter settings. This highlights the fact that the default parameter settings in Eigen CPU backend are not the ideal settings; and even for a carefully hand-tuned MKL backend, the settings may be sub-optimal. Our evaluations also revealed that TensorTuner is efficient at finding the optimal settings --- it is able to converge to the optimal settings quickly by pruning more than 90% of the parameter search space.Comment: Paper presented at Machine Learning in HPC Environments workshop held along with SuperComputing 2018, Dallas, Texa
    • …
    corecore