
Universidade do Minho
Escola de Engenharia

Rui Pedro Sousa Rodrigues do Souto

Query Optimizers Based on
Machine Learning Techniques

julho de 2021

Rui Pedro Sousa Rodrigues do Souto

Query Optimizers Based on
Machine Learning Techniques

Dissertação de Mestrado
Mestrado Integrado em Engenharia Informática

Trabalho efetuado sob a orientação de
Doutor Fábio Castanheira Luís Coelho
Doutor Ricardo Manuel Pereira Vilaça

Universidade do Minho
Escola de Engenharia

julho de 2021

Copyright and Terms of Use for

Third Party Work

This dissertation reports on academic work that can be used by third parties as long

as the internationally accepted standards and good practices are respected concerning

copyright and related rights.

This work can thereafter be used under the terms established in the license below.

Readers needing authorization conditions not provided for in the indicated licensing should

contact the author through the RepositóriUM of the University of Minho.

License granted to users of this work

CC BY

https://creativecommons.org/licenses/by/4.0/

i

https://creativecommons.org/licenses/by/4.0/

Acknowledgments

Throughout the writing of this dissertation, I have received a great deal of support and

assistance.

I would like to express my deep gratitude to Fábio Coelho and Ricardo Vilaça, my

research supervisors. Without your assistance and dedicated involvement in every step

throughout the process, this dissertation would not have been possible, and you brought

this work to a higher level.

I would like to extend my sincere thanks to every member of High-Assurance Software

Laboratory (HASLab) & INESC TEC for all their help. You provided me with the tools

that I needed to choose the right direction and successfully complete my dissertation.

I would like to express my profound gratitude to my family for investing in my edu-

cation and always providing me everything I needed to strive, without which none of this

work or the previous five years would have been possible. You are always there for me.

Some special words of gratitude go to all my friends who have always been a major

source of support when things would get a bit discouraging. The last few years would

have been unthinkable without all of the stories we have shared and all the help you have

provided.

The last word goes for my loved one, Mariana, whose invaluable and unconditional

support was what kept me moving. Every time I was ready to quit, you did not let

me, and I am forever grateful. This dissertation stands as a testament to your unfailing

support and continuous encouragement.

Thank you

This work is financed by National Funds through the Portuguese funding agency, FCT

- Fundação para a Ciência e a Tecnologia, within project UIDB/50014/2020.

ii

Statement of Integrity

I hereby declare having conducted this academic work with integrity.

I confirm that I have not used plagiarism or any form of undue use of information or

falsification of results along the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the

University of Minho.

iii

Abstract

Query optimizers are considered one of the most relevant and sophisticated components

in a database management system. However, despite currently producing nearly optimal

results, optimizers rely on statistical estimates and heuristics to reduce the search space

of alternative execution plans for a single query. As a result, for more complex queries,

errors may grow exponentially, often translating into sub-optimal plans resulting in less

than ideal performance. Recent advances in machine learning techniques have opened

new opportunities for many of the existing problems related to system optimization.

This document proposes a solution built on top of PostgreSQL that learns to select

the most efficient set of optimizer strategy settings for a particular query. Instead of

depending entirely on the optimizer’s estimates to compare different plans under different

configurations, it relies on a greedy selection algorithm that supports several types of

predictive modeling techniques, from more traditional modeling techniques to a deep

learning approach.

The system is evaluated experimentally with the standard TPC-H and Join Order-

ing Benchmark workloads to measure the cost and benefits of adding machine learning

capabilities to traditional query optimizers.

Keywords Database tuning, machine learning, query optimization

iv

Resumo

Os otimizadores de queries são considerados um dos componentes de maior relevância e

complexidade num sistema de gestão de bases de dados. No entanto, apesar de atualmente

produzirem resultados quase ótimos, os otimizadores dependem do uso de estimativas

estat́ısticas e de heuŕısticas para reduzir o espaço de procura de planos de execução alter-

nativos para uma determinada query. Como resultado, para queries mais complexas, os

erros podem crescer exponencialmente, o que geralmente se traduz em planos sub-ótimos,

resultando num desempenho inferior ao ideal. Os recentes avanços nas técnicas de apren-

dizagem automática abriram novas oportunidades para muitos dos problemas existentes

relacionados com otimização de sistemas.

Este documento propõe uma solução constrúıda sobre o PostgreSQL que aprende a

selecionar o conjunto mais eficiente de configurações do otimizador para uma determinada

query. Em vez de depender inteiramente de estimativas do otimizador para comparar

planos de configurações diferentes, a solução baseia-se num algoritmo de seleção greedy que

suporta vários tipos de técnicas de modelagem preditiva, desde técnicas mais tradicionais

a uma abordagem de deep learning.

O sistema é avaliado experimentalmente com os workloads TPC-H e Join Ordering

Benchmark para medir o custo e os benef́ıcios de adicionar aprendizagem automática a

otimizadores de queries tradicionais.

Palavras-chave Aprendizagem automática, otimização de queries, tuning de base de

dados

v

Contents

List of Figures viii

List of Tables ix

Glossary x

1 Introduction 1

1.1 Problem . 2

1.2 Contributions . 3

1.3 Document Structure . 3

2 State of the Art 4

2.1 Foundations of Query Processing . 4

2.1.1 Architecture of a Query Processor 5

2.1.2 Basic Optimization Approach and Techniques 8

2.1.3 Dynamic Optimization Approach and Techniques 10

2.2 Foundations of Machine Learning . 11

2.2.1 Learning Process Overview . 11

2.2.2 Types of Learning Algorithms . 12

2.2.3 Tasks . 13

2.2.4 Algorithms . 14

2.3 Machine Learning in Query Processing . 16

2.3.1 Join Ordering . 17

2.3.2 Cost Model and Cardinality Estimation 17

2.3.3 Performance Tuning . 18

2.4 Discussion . 18

vi

Contents

3 Odin 20

3.1 Preliminary Experiments . 20

3.2 Architecture . 21

3.3 Prototype Implementation . 23

3.3.1 Parser and Featurizer . 23

3.3.2 Learning Module . 25

3.3.3 Configuration Tuner . 27

4 Performance Evaluation 32

4.1 Experimental Setup . 33

4.1.1 PostgreSQL . 33

4.1.2 Workloads . 33

4.1.3 Modeling . 35

4.1.4 Metrics and Validation . 35

4.2 Query Performance Analysis . 35

4.2.1 Predictive Model Comparison . 36

4.2.2 Optimizer Comparison . 39

4.2.3 Inference and Training Overhead 42

4.2.4 Translating Into a Real-World Scenario 43

5 Conclusions 44

5.1 Future Work . 45

vii

List of Figures

2.1 Query processing steps (Kossmann, 2000) 5

2.2 Example of a query execution plan (Kossmann, 2000) 6

2.3 Simplified version of the dynamic programming algorithm (Özsu and Val-

duriez, 2011) . 8

2.4 Reinforcement learning . 13

2.5 Convolutional neural networks . 16

3.1 Impact of disabling strategy settings in PostgreSQL on query’s performance 21

3.2 Odin’s architecture . 22

3.3 Example of the output of an EXPLAIN command output 24

3.4 Plan-level featurization . 24

3.5 Operator-level featurization . 25

3.6 Traditional machine learning algorithms 26

3.7 Tree convolutional neural network . 27

3.8 Odin’s predictive model training . 28

3.9 Odin’s configuration analysis and selection 29

3.10 Odin’s greedy enumeration algorithm . 31

4.1 Traditional predictive model comparison for the TPC-H and JOB workloads 36

4.2 Tree convolutional neural network experimental architecture 37

4.3 Query runtime comparison between the three approaches 39

4.4 Number of times an operator was selected to be disabled 40

4.5 Runtime difference per query between PostgreSQL and Random Forest for

the TPC-H workload . 41

viii

List of Tables

2.1 Example of supervised learning naming conventions 12

4.1 PostgreSQL settings overview . 33

4.2 Workloads statistics overview. 34

4.3 RMSE for different batch sizes . 38

4.4 RMSE for different scenarios during TCNN training 38

ix

Glossary

CNN Convolutional Neural Network.

DBAs Database Administrators.

DBMS Database Management System.

JOB Join Order Benchmark.

RF Random Forest.

RMSE Root Mean Square Error.

SQL Structured Query Language.

SVMs Support Vector Machines.

TCNN Tree Convolutional Neural Network.

TPC-H Transaction Processing Performance Council-H.

x

Chapter 1

Introduction

The amount of generated data is currently growing exponentially. As a result, relational

database management systems continue to be the most widely used solution in business

environments to support transactional data storage. Such systems store information in

the form of tables, where data is stored in rows and columns.

The widespread use of relational databases is partly due to the use of declarative

data query languages (i.e., SQL). The abstraction from the actual low-level details of

the physical organization of data allows complex queries to be expressed concisely and

straightforwardly while providing a lot of querying flexibility. For this reason, the user

only needs to specify the form of the result to be obtained and not the procedure to

achieve it.

The query processor is the module that reads the query and generates the low-level

procedure that should be executed to obtain the result. It starts by transforming the

user-declared query into a lower-level relational algebra representation that outlines an

efficient execution plan.

An important aspect of query processing is optimization. During this process, the

query is optimized, and the most efficient plan among the different possible strategies

that can be used to process it is selected. Since users are not expected to write queries as

efficiently as possible, it is up to the system to build an execution plan that minimizes their

execution cost. Usually, this process includes three separate components: search space,

cost model, and search strategy. The search space is the set of alternative execution

plans that return the same result and is obtained by applying transformation rules at

the relational algebra level. They vary in how the operations involved are conducted

1

1.1. Problem

and how they are implemented, resulting in different performance levels. The cost model

tries to estimate the cost of a single execution plan. Finally, the search strategy exploits

the search space to choose the plan that maximizes performance based on cost model

predictions.

In recent years, we have witnessed the exponential growth in the study and develop-

ment of machine learning applications in systems’ optimization. It has opened different

possibilities of applying machine learning techniques in the architecture of database sys-

tems, which are becoming increasingly complex and hard to tune. This dissertation studies

the practicality and utility of sophisticated machine learning techniques regarding query

optimization as a promising approach.

1.1 Problem

Query optimization is the link between declarative languages and the efficient execution

of queries expressed in them. However, it is essential to state that no optimizer generates

optimal plans (Bailis et al., 2015). First, the cost of a particular plan is obtained by

considering statistical information about the relations expressed in the query. There is

a trade-off between the accuracy of these statistics and their maintenance costs, as more

accurate statistics are significantly harder to maintain. For this reason, all optimizers rely

on cardinality estimates that are usually measured based on simplifying assumptions such

as uniformity and independence (Leis et al., 2015). Such assumptions are often incorrect

in real-world data sets, leading to sub-optimal and sometimes disastrous plans.

Furthermore, exploiting a very large search space may have a higher computational

cost than the runtime itself and is considered a NP-hard problem. This is why optimizers

employ a set of heuristics to limit the size of their search space. The fact that query op-

timization still relies on carefully tuned and complex heuristics that have been designed

over the years means that they require even more tuning by expert database administra-

tors to improve query performance on each database. Additionally, even if using these

heuristics is an effective way of restricting the search space, in some cases, they can fall

short, resulting in bad plans (Leis et al., 2015).

2

1.2. Contributions

1.2 Contributions

Intending to address current query optimization limitations of relational databases, this

document describes the design and implementation of a proof-of-concept to provide ma-

chine learning capabilities to conventional database systems. At a high level, Odin im-

plements predictive modeling techniques to guide a traditional query optimizer and select

the execution strategy the query optimizer should use for that query, limiting and steer-

ing the search space. To achieve this, the approach relies on the availability of historical

query execution data to generate predictive models and estimate the cost of executing

alternative plans, each generated under different optimizer configurations.

The proposed solution improves the system’s decision-making process, making it more

dynamic and adaptive instead of relying entirely on a complex set of heuristics and statis-

tical estimates. In addition, it does not replace or discard the query optimizer completely

but instead adopts procedures readily available in most relational database systems and

works in tandem with the query optimizer to improve query runtime. Finally, it provides

a flexible, embedded, and extensible architecture supporting new data sources and query

processing and optimization approaches.

1.3 Document Structure

The rest of the document is organized in the following manner: Chapter 2 addresses

state of the art and concepts of interest to provide a better framing of the work as

well as discussion of the guiding principles considered during its development; Chapter 3

details the solution, beginning with a high-level architecture overview and followed by an

explanation of each developed module; Chapter 4 presents an analysis and discussion of

the results obtained during the experimental evaluation, describing experimental setups,

workloads, metrics, and results; Finally, Chapter 5 outlines the main conclusions and

deductions obtained from the experimental evaluation, followed by a proposal of the

directions this work could take in the future.

3

Chapter 2

State of the Art

This chapter introduces the relevant state of the art to this dissertation. Currently,

relational database management systems rely on a vast number of query optimization

techniques that were continuously developed and implemented into production systems

over several decades.

First, an introduction to query processing is given, discussing the basic concepts and

strategies for optimizing queries. It starts by characterizing the main components involved

in the process and the standard algorithm used to enumerate semantically equivalent plan

alternatives. Finally, dynamic query optimization techniques are discussed.

Moreover, an overview of the broad domain of machine learning is provided, describ-

ing its fundamental concepts, multiple paradigms, types of tasks, and different machine

learning algorithms.

The final section narrows the gap between machine learning and optimization of

database systems. It discusses possible courses of action and describes the relevant related

work concerning machine learning techniques in database systems. In the end, based on

the analysis of related work, a discussion around the limitations of the current solutions

is presented as well as the guiding principles that are taken into consideration during the

development of the proposed solution.

2.1 Foundations of Query Processing

There is considerable work in database systems, from architectures and techniques for

transaction and query processing to data models, languages, and user interfaces. This

4

2.1. Foundations of Query Processing

section focuses primarily on query processing and gives a comprehensive overview of what

techniques currently exist. It focuses mainly on fundamental query processing mechanisms

of relational databases that use declarative languages, such as SQL.

2.1.1 Architecture of a Query Processor

Figure 2.1 shows the traditional architecture for query processing and the different steps

this process involves. When the query processor receives a SQL statement as input, the

query is translated into an internal representation to be further optimized to reduce the

overall execution runtime. Finally, the selected execution plan is submitted to the DBMS

execution engine to obtain the desired result. We present a brief description of each

component below.

Figure 2.1: Query processing steps (Kossmann, 2000)

Parser

As the SQL statement itself provides an abstraction to lower-level details, it needs to be

parsed and translated into an internal representation to be later optimized. This is the

primary function of the parser.

Query Rewrite

In this stage, multiple transformation rules that do not depend on the system’s physical

state are applied. Such rules are good choices regardless of the size of the tables, the

existence of index structures, locations of copies of tables, and computational power. This

5

2.1. Foundations of Query Processing

process includes eliminating redundant predicates, simplifying expressions, and unnesting

subqueries.

Query Optimizer

The query optimizer applies transformations that depend on the physical state of the

system. For example, it determines the indices to use when executing the query, the

methods (e.g., hashing or sorting) to use when executing the operations involved (e.g.,

joins and group-bys), and the order in which they should be executed. These decisions

are made following a cost model and enumerating several alternative execution plans that

return the same result.

Plan

A plan specifies how a particular query should be executed. Generally, query plans resem-

ble traditional tree structures. Each node represents a query operator (e.g., join, group-by,

sort, scan), and the edge between nodes represents the parent-child relationship between

them.

Figure 2.2: Example of a query execution plan (Kossmann, 2000)

6

2.1. Foundations of Query Processing

Figure 2.2 shows an example execution plan for a query that involves two different

Tables: A and B. It specifies that Table A is scanned at Site 1 using an index, and B is

scanned at Site 2. They are then shipped to Site 0 using send and receive operators, and

B is materialized and reread at Site 0. Both tables are then joined using a nested-loop

join operator.

Plan Refinement and Code Generation

In the plan refinement and code generation stage, the plan produced by the optimizer in

the previous step is transformed so that it can be further interpreted and executed by the

query execution engine.

Query Execution Engine

This component ensures that generic implementations for every operator (e.g., send, scan

or nested-loop join) exist. Current query execution engines are based on an iterator

model (Graefe, 1993), where operators are implemented as iterators that share the same

interface. This allows combining two different iterators (following the consumer-producer

relationship of a plan), meaning that any plan can be executed. Another advantage of the

iterator model is that it supports the pipelining of results from one operator into another

to improve query execution performance.

Catalog

As mentioned earlier, the optimization effectiveness depends on statistics regarding the

state of the database. The catalog stores all the information needed for optimization. It

maintains the database schema, partitioning schema, and physical information about the

database. In traditional relational database systems, the catalog information is stored in

tables.

It is important to note that, even though the architecture represented in Figure 2.1 is the

most widely used today, other alternatives have emerged over time. For example, many

commercial database systems use architectures such as Volcano (Graefe and McKenna,

1993) and Cascades (Graefe, 1995), where query rewriting and optimization steps proceed

as one.

7

2.1. Foundations of Query Processing

Query processors may also differ in various aspects, such as the optimization granular-

ity. For instance, there have been proposals to optimize multiple queries at a time (Sellis,

1988). This approach can be efficient if the queries are similar, even if the search space

significantly increases.

2.1.2 Basic Optimization Approach and Techniques

This section addresses the basic approach and strategies for optimizing queries. It first

explains how a dynamic programming algorithm enumerates alternative query execution

plans and then defines how different cost models can be used to estimate a particular

plan’s execution cost.

Plan Enumeration with Dynamic Programming

In this type of approach, the execution plan is created at compile-time and only later

executed by the DBMS engine. The conventional strategy to optimize this type of queries

goes back to the dynamic programming algorithm used in System R (Selinger et al., 1979)

and is currently implemented in most commercial systems.

Algorithm 1: Plan Enumeration with Dynamic Programming

Input: QT : query tree with n relations

Output: output: best QEP (Query Execution Plan)

begin

for each relation Ri ∈ QT do

for each access path APij to Ri do

compute cost(APij)

best APi ←− APij with minimum cost

for each order (Ri1, Ri2, ..., Rin) with i = 1, ..., n! do

build QEP (...((best APij ./ Ri2) ./ Ri3) .// Rin)

compute cost (QEP)

output←− QEP with minimum cost

Figure 2.3: Simplified version of the dynamic programming algorithm (Özsu and Val-

duriez, 2011)

8

2.1. Foundations of Query Processing

The simplified version of the algorithm is shown in Figure 2.3. It involves two loops

that operate in a bottom-up fashion, building more complex plans through simpler ones.

In the first step, the optimizer selects the best access method for each table referenced in

the query. To do so, it exploits the predicates and access paths available for each table

and estimates the cost for each alternative plan. For instance, if a hypothetical Table A is

replicated in sites S1 and S2, the algorithm would enumerate scan(A, S1) and scan(A, S2)

as two possible alternatives to use in the final plan.

If the query involves more than a single table, the optimizer will explore all possible

join sorting permutations (n! possibilities for n relations). Permutations are produced by

the dynamic construction of a tree with alternative strategies. It is relevant to mention

that the algorithm does not consider all possible permutations since some are not of

interest. For example, permutations involving Cartesian products and the commutative

equivalent strategies with the highest cost are not considered. With these two heuristics,

the number of strategies examined has an upper bound of 2n rather than n!. Inefficient

plans are discarded (i.e., pruned) as soon as possible. A plan can be discarded when there

is an alternative at a lower cost. For example, A ./ B and B ./ A would be considered

two possible alternatives, but only one of them would be considered in the optimal plan.

This step reduces the complexity of query optimization as it prevents more complex plans

from being obtained from simpler and inefficient ones.

Cost Model and Cardinality Estimation

An optimizer’s cost model predicts the cost of a given execution plan and relies on func-

tions to predict the cost of operators, statistics and base data, and formulas to evaluate

the size of intermediate results. Using cardinality estimates as its primary input, estimat-

ing the cost of a particular query execution plan typically includes estimating the cost of

all operators involved and summing them up.

Cardinality estimates are usually computed based on simplifying assumptions such as

uniformity and independence. The principle of uniformity assumes that all values, except

for the most common ones, have the same number of tuples. On the other hand, the

principle of independence assumes that predicates on attributes are independent. For

joins, certain cardinality estimators follow the principle of inclusion, where the domains

of the join keys overlap such that the keys from the smaller domain have matches in the

9

2.1. Foundations of Query Processing

larger domain.

2.1.3 Dynamic Optimization Approach and Techniques

Even though the traditional approach outlined in the previous section is widely accepted,

there has been a concern over the years that cost estimates lead to too many errors since

many data sources do not provide reliable statistics about the system’s state. Since certain

assumptions made at compile-time rarely hold throughout query processing, the accuracy

of the information the optimizer considers changes over time. In addition, specific pa-

rameter values may not be known until runtime. For this reason, questions about the

timing of the optimization were raised, and adaptive query processing techniques were

developed, allowing execution plans to be altered at execution time.

Dynamic Query Evaluation Plan (Cole and Graefe, 1994) introduced the idea of gen-

erating several alternative plans or sub-plans at compile-time, save them in the database

and choose the plan that best fits the state of the system right before its execution. The

approach is primarily static given that dynamic execution plans are initially produced

using a dynamic programming algorithm as the one described earlier in Section 2.1.2.

However, certain optimization decisions may occur at runtime. For instance, it is possible

to use choose-plan operators when two different plans are incomparable. Two or more

equivalent plans are incomparable at compile time when important runtime information

(e.g., parameter bindings) is missing to estimate cost.

Decomposition (Özcan et al., 1997) developed a strategy for processing queries where

the general procedure consists of two steps. First, in query decomposition, the query

is rewritten into a group of sub-queries, each targeted at a single data source, based

on information acquired on the fly. Second, the query scheduler explores the potential

parallelism and execution dependencies between the different sub-queries to restrain the

search space and optimal query execution schedule. This minimizes the overall response

time and, consequently, reduces the total query processing cost.

Continuously Adaptive Query Processing Eddies (Avnur and Hellerstein, 2000) is

a query optimization system that continuously reorders operators in a query plan as it

runs by merging the optimization and execution stages. This allows each tuple to have

10

2.2. Foundations of Machine Learning

a flexible ordering of the query operators. It is possible for query plans to be reordered

using two different principles: (1) synchronization barriers where inputs from different

sources are coordinated and (2) moments of symmetry where pipelined joins are easily

reordered.

2.2 Foundations of Machine Learning

Machine learning is currently a hot topic for many reasons. The most important is that

it can recognize unknown patterns and make decisions based on data-driven predictive

models without being explicitly programmed to do so.

There are obvious questions that need to be answered to implement machine learning

systems properly. Having several algorithms to choose from, the answer to these questions

varies depending on different situations as no single algorithm works for all of them. There

are many factors at work, such as the size and structure of the available data, the purpose

of using machine learning in that particular scenario, and the available computational

power. This section provides a better understanding of the multiple paradigms, tasks,

and the most common machine learning algorithms currently available.

2.2.1 Learning Process Overview

Machine learning algorithms rely on historical data (i.e., a data set) typically represented

as a table, where each row represents an instance or data point. Each column represents

the features of that instance and its corresponding values.

The data set is usually split into at least two different subsets, a training data set,

in which a predictive model is built from, and a test data set to determine the model’s

predictive accuracy. Usually, an optional third validation set may be created as well.

As mentioned earlier, machine learning algorithms use statistics and mathematical

optimization to automatically find unknown data patterns and predict some target out-

put or response. The optimization process generally involves finding the minimum or

maximum value of a function, often referred to as a loss or cost function.

11

2.2. Foundations of Machine Learning

2.2.2 Types of Learning Algorithms

Different machine learning algorithms differ in their approach, the type of data used as

input and output, and the type of task or problem they are intended to solve. This

subsection discusses the different types of algorithms available.

Supervised Learning

In supervised learning, the input data has a known label or result. The goal is to predict a

target variable of the unseen data given a set of variables or features. The algorithms build

a predictive model on labeled historical data and learn relationships between the input

and label variables. Table 2.1 shows a typical simple example of a supervised learning

problem, where the target variable to be predicted is the class of the iris plant.

Features Target Variable

Sepal Length Sepal Width Petal Length Petal Width Species

5.1 3.5 1.4 0.2 setosa

4.9 3.0 1.4 0.2 setosa

4.7 3.2 1.3 0.2 setosa

4.6 3.1 1.5 0.2 setosa

5.0 3.6 1.4 0.2 setosa

Table 2.1: Example of supervised learning naming conventions

A predictive model’s quality is measured using an independent test set to evaluate

whether the discovered relationships are helpful in unseen scenarios. By feeding the

model with input variables of the test data, it is possible to compare its predicted label

with the data’s actual label. The evaluation process typically involves a proportional split

between train and test data. A more significant proportion of test data ensures a better

performance validation. In contrast, insufficient training data means that the model has

fewer data to learn from.

Unsupervised Learning

Unsupervised learning involves learning from data with no label or response variable and

is more about finding patterns than prediction. It is referred to as unsupervised since it

12

2.2. Foundations of Machine Learning

lacks a response variable that can supervise the analysis. Considering that no labels are

available for input data, a model is built by deducting hidden input data patterns.

Reinforcement Learning

The reinforcement learning approach is illustrated in Figure 2.4. The algorithm interacts

with an environment and learns to optimize its behavior over a continuous feedback system

of rewards and punishments to maximize the numerical value of reward over a given

amount of time.

Figure 2.4: Reinforcement learning

In contrast to supervised learning, the agent observes the current state and decides

what to do, predicting the expecting future, so the agent is bound to learn from its

experience. Reinforcement learning focuses on online planning and requires a balance

between exploration (of the unknown) and exploitation (of existing knowledge).

2.2.3 Tasks

A machine learning task refers to the type of prediction or inference being made based

on the problem or question being asked and the available data. This subsection describes

the different machine learning tasks and some of their conventional use cases.

Classification

Classification is a supervised machine learning task in which one or more classes are

assigned to each instance based on a set of values for the input variables. It has different

types depending on the number of output classes available: binary classification when

there are two classes and multi-class classification when there are three or more classes.

13

2.2. Foundations of Machine Learning

It is important to note that it differs from multi-label classification, where an instance

can be assigned to multiple labels.

Regression

Target variables can be either numerical or categorical. While classification problems are

associated with categorical labels, regression tasks refer to problems with a numerical

target variable. Regression algorithms model how the variation in the values of features

translates into a numerical label.

Even though classification and regression are the most popular tasks, there are other types

of tasks worth mentioning:

• Clustering where the main goal is to group instances of data into clusters that

contain similar characteristics by identifying relationships in a data set that one can

not merely derive by browsing or simple observation;

• Anomaly Detection that identifies rare events or observations that differ signifi-

cantly from the majority of the data;

• Recommendation Systems that can produce a list of recommended products or

services to a given user. These systems can use a single input or multiple inputs

within and across platforms, such as items, users, and transactions.

2.2.4 Algorithms

There are many algorithms proposed in the literature, each with its advantages and lim-

itations depending on the task at hand and the data available. Commonly used machine

learning algorithms include:

Linear & Logistic Regression

Regression algorithms infer the relationship between output labels and the corresponding

input data features. The main difference between linear and logistic regression relies on

the type of dependent variable. In linear regression, it is continuous, while in logistic

regression, it is discrete.

14

2.2. Foundations of Machine Learning

Decision Trees

Decision trees are used for both regression and classification problems based on the data’s

actual attributes. Each node represents a feature of a given instance, and each branch

represents a decision. The leaves represent an outcome, which can be either categorical

or numerical.

Association Rules

Association rule learning algorithms are a form of rule-based machine learning method to

discover associations between data variables. Each rule is formed of an antecedent and a

consequent, enabling the discovery of frequent patterns or association structures within a

data set.

Support Vector Machines

Support Vector Machine can be used for both classification and regression problems and

divides the data samples of two classes by determining a hyper-plane in input space that

maximizes the separation between them and classifies new cases to one of the two groups.

Genetic Algorithms

Genetic Algorithms view learning in terms of competition among a population of evolving,

alternative concepts. A genetic algorithm maintains a population of candidate problem

solutions. According to their performance, only the fittest of these solutions survive and

exchange information with other candidates to form new solutions.

Artificial Neural Networks

Artificial Neural Networks, inspired by biological neural networks, comprise basic pro-

cessing units called neurons, connections, and weights. During the learning process, the

weights of the connections are updated over time using a backpropagation algorithm to

model the dependencies between input features and target variables.

Deep learning refers to a large and deep artificial neural network with many more

layers and many more nodes in each layer, resulting in many more parameters to tune.

The higher amount of available data and computational power are the reason for its

sudden popularity over the years.

15

2.3. Machine Learning in Query Processing

Convolutional Neural Networks A convolutional neural network (CNN) is a partic-

ular type of neural network that takes an image as input. It can differentiate one image

from the other by assigning importance through learnable weights and biases to various

traits or objects in the image. As illustrated in Figure 2.5, it has convolutional layers

that intend to capture the high-level features from the input image, and pooling layers,

responsible for reducing images into an acceptable size that is easier to process without

losing the convolved feature, which is a critical step for getting the right prediction.

Figure 2.5: Convolutional neural networks

The actual learning process is done by feeding the flattened output of the high-level

features (i.e., the convolutional layer’s output) to a feed-forward neural network and

applying the backpropagation algorithm to every training iteration. Thus, over a series

of epochs, the model can distinguish between dominating and certain low-level features

in images.

2.3 Machine Learning in Query Processing

Section 2.1 has shown that despite the progress made over the past decades, query op-

timizers continue to be highly complex components with well known limitations. The

challenge of enumerating a set of candidate execution plans and identifying the most ef-

ficient has a prominent trade-off. Searching a larger search space increases the likelihood

of finding the optimal plan but requires spending more time on query optimization than

desired.

As described earlier, current database systems use a set of heuristics to limit the search

space at the cost of missing potential good plans to reduce the search space and optimiza-

16

2.3. Machine Learning in Query Processing

tion time as a result. More importantly, they use static strategies that do not learn from

past experiences risking selecting the same bad plan multiple times and, therefore, never

learning for its bad choices.

Data-driven machine-learning-based applications success has left the database research

community wondering whether it was possible to integrate machine learning techniques

in query processing and optimization. Having described both the foundations of query

processing and machine learning, this section explores how the two can overlap and looks

into more detail on the many attempts made over the last few years to apply machine

learning to modern query optimizers. The majority of this work has focused on replacing

a single component of the optimizer with learned models.

2.3.1 Join Ordering

As the join order’s permutations have a critical effect on the performance of relational

queries (Özsu and Valduriez, 2011), applying machine learning techniques to guide the

search space in a more data-driven way has received a lot of attention.

ReJOIN (Marcus and Papaemmanouil, 2018) uses a traditional cost-based approach

to query optimization where an algorithm selects the most efficient ordering for execution

following a cost model. The main difference is addressing the incapability of optimizers

learning from past experiences by using reinforcement learning combined with the tradi-

tional cost model to automatically learn search strategies and explore the space of possible

join orderings.

2.3.2 Cost Model and Cardinality Estimation

Another limitation of current query optimizers is using cardinality estimates as the op-

timizer’s cost model principal input. There is a trade-off between the accuracy of the

statistics in which they are based and their maintenance costs since more accurate statis-

tics are significantly harder to maintain. For this reason, they are usually computed based

on simplifying assumptions that are frequently wrong in real-world scenarios, which may

result in poor performance (Leis et al., 2015).

In accordance with this observation, there is a proposal (Kipf et al., 2018) to model

the cardinality estimation as a supervised learning problem, with the input being query

17

2.4. Discussion

features and the output being the estimated cardinality. The model can further be used

as an estimator for other, unseen queries.

2.3.3 Performance Tuning

Since the architecture of query optimizers have the inherent limitations mentioned above,

database knob tuning became an incredibly important task to provide a higher level of

flexibility to meet specific requirements and achieve higher performance. The problem

is that databases have hundreds of knobs which are typically pragmatically adjusted by

DBAs based on response time analysis (Ferreira et al., 2020; Van Aken et al., 2017).

Bao (Marcus et al., 2020) is a learned system that is capable of learning what execution

strategy the query optimizer should use by limiting the search space of the traditional

optimizer on a per-query basis. It is a reinforcement learning-based approach that observes

a reward value following the selection of a optimization strategy configuration.

2.4 Discussion

In short, many of these solutions lead to phenomenal results, confirming the potential of

integrating machine learning techniques in query optimizer components. However, one

could argue that, similarly to the problems they are trying to solve, they suffer from several

fundamental limitations as well. Most proposed solutions are based on reinforcement

learning techniques that need a substantial amount of time and queries to learn from before

matching or outperforming modern query optimizers. Another problem is that they try

to replace or discard state-of-the-art query optimizers entirely and do not take advantage

of their readily available mechanisms. Finally, they introduce even more complexity to a

system that is already complex by itself, making it even harder to understand and extend

the learned component’s query planning capability.

Based on the analysis of previous work, a complete and adequate solution should use

the following guiding principles:

• Require a short training time and amount of data to learn from. A realistic solution

should not take days to train nor should it require an impractical amount of data

before having a positive impact on query performance;

18

2.4. Discussion

• Learn from the optimizer. Since query optimizers contain decades of meticulously

research and development, the solution should leverage the valuable information

obtained from their generated query plans;

• Have a high level of interpretability. It should provide a way of understanding the

decisions that are made under the hood and be adjustable when leading to poor

decisions while the underlying optimizer is functioning correctly;

• Be extensible. A good proposal should be easily extensible, making it possible to

add new query plan representation techniques, machine learning algorithms and be

used across different database systems.

19

Chapter 3

Odin

This chapter describes the developed solution, beginning with some experimental obser-

vations on which it is based upon, followed by a high-level architecture overview and the

prototype implementation in detail.

3.1 Preliminary Experiments

As discussed in the previous chapter, the optimizer’s behavior is driven by indices, cost

settings, strategy settings, and its general perception of the data distribution. Database

systems come with basic configurations tuned for broad compatibility rather than optimal

performance. As the default parameters may be unsuitable in some scenarios, database

systems allow disabling different strategy settings on a per-query or permanent basis to

dissuade the optimizer from going down an unproductive path.

To analyze the impact of enabling or disabling strategy settings on query runtime, we

set up a scenario that considers an out-of-the-box PostgreSQL (PostgreSQL, 2021) server

instance and two different queries from the Join Order Benchmark (JOB) (Gregrahn)

workload, which is described in further detaile in Section 4.1.2. First, each query is

executed without any strategy restrictions, in which all settings are enabled, and then

executed with strategies that tend to be costly disabled, establishing a comparison among

these settings in the end.

20

3.2. Architecture

Figure 3.1: Impact of disabling strategy settings in PostgreSQL on query’s performance

As Figure 3.1 clearly illustrates, dissuading the optimizer from using strategies such

as nested loop joins and sequential scans may result in substantial reductions in query

execution time, despite not always being the case.

Based on this observation, one could argue that finding the best configuration for a

query can significantly improve execution runtime. Having some prior knowledge of the

data, database administrators can infer which operators will lead to sub-optimal perfor-

mance and restrict the search space by disabling those strategies. However, most of the

time, knobs are pragmatically adjusted based on response time analysis, as permanently

disabling specific strategies could lead to performance degradation. For instance, for

JOB’s query 16b, disabling nested loop joins causes a regression in query performance.

Our solution sits on top of a conventional optimizer and learns when to enable or

disable some of its strategies on a per-query basis. Effectively, the core idea is to learn the

execution strategy the query optimizer should use for a particular query and maximize

query performance improvements while avoiding significant regressions.

3.2 Architecture

Odin lies between the user and the relational database it is built upon, introducing learning

capabilities to its query optimizer. It extends the client interface provided by the database

system with commands that infer the best set of strategy settings on a per-query basis.

21

3.2. Architecture

Upon receiving a query, it evaluates different plans under different optimizer strategy

settings and tries finding the configuration that results in the lowest runtime. To do so,

it relies on the underlying optimizer to produce different execution plans under different

configurations. It takes advantage of query plan execution information and statistics that

databases systems provide (i.e., type of operators involved, the cardinality estimates,

and execution cost) before execution. These are then used to construct a vectorized

representation of each plan, which is later fed into a predictive model and evaluated

based on its predicted outcome.

The architecture of Odin is based on three different modules: (1) the Parser and Fea-

turizer, (2) the Learning Module, and (3) the Configuration Tuner. Figure 3.2 illustrates

the solution’s architecture and how the different modules interact with each other. Next,

we describe in further detail the role of each module.

Figure 3.2: Odin’s architecture

The Parser and Featurizer module contains several mechanisms for reading files

that contain SQL statements and extract vector representations of query plans generated

by the optimizer to be further interpreted by predictive modeling techniques.

The Learning Module is responsible for generating, loading, and saving several types

of predictive models. The module assumes the existence of previously executed queries

from which the models can be obtained and relies on the plan vector representations

22

3.3. Prototype Implementation

mentioned above and their observed runtimes.

The Configuration Tuner is in charge of orchestrating the communication between

the two as well as enabling the selection of the best alternative optimizer configuration for

a particular query. It interacts with the PostgreSQL client interface to enable or disable

a set of strategies based on a direct comparison between different configurations and their

expected runtime, as predicted by one of the previously trained learned models.

3.3 Prototype Implementation

The Odin middleware is designed to be adaptable and extensible, adopting procedures

that are readily available in most relational database systems. The current prototype is

built on top of PostgreSQL to enhance its optimization capabilities without replacing or

discarding its optimizer completely. This section goes through the actual implementation

details of each module.

3.3.1 Parser and Featurizer

This module has the task of parsing SQL statements and generate a vector representation

of each alternative execution plan.

Parser

The parser reads SQL statements and interacts with the underlying DBMS interface to

get an idea of how the optimizer intends to execute the query without actually running it.

Most database systems come with a built-in explainer that tells how the query planner will

execute a particular SQL query (e.g., EXPLAIN command in the case of PostgreSQL). As

shown in Figure 3.3, it allows targeting query performance specifics such as: (1) how the

tables referenced by the statement will be scanned, (2) if multiple tables are referenced,

information about what join algorithms will be used to bring together the required rows

from each input table and (3) cardinality estimates and predicted execution time.

23

3.3. Prototype Implementation

EXPLAIN SELECT * FROM foo;

QUERY PLAN

Seq Scan on foo (cost=0.00..155.00 rows=10000 width=4)

(1 row)

Figure 3.3: Example of the output of an EXPLAIN command output

Featurizer

The featurizer takes the execution plan that the PostgreSQL planner generates for the

supplied statement and converts it to a vector of fixed dimensions for machine learning

algorithms to interpret it. It provides a simple interface of two methods representing

execution plans at two different granularities to support two different types of machine

learning algorithms.

Plan-level Featurization In this method, the query plan is represented as a single

vector and ignores lower-level details, such as the position and order between different

operators. Instead, as illustrated in Figure 3.4, it uses a set of features containing esti-

mates, such as operator cardinalities and execution times, together with the occurrence

count of each operator type in the query plan.

Figure 3.4: Plan-level featurization

This approach was devised to be used directly in more traditional machine learning

approaches. Additionally, it is model agnostic and can readily work with different model

types.

24

3.3. Prototype Implementation

Operator-level Featurization This method encodes a query plan as a tree of vectors

and preserves its inherent tree structure by binarizing the query plan tree and encoding

each operator as a vector. As shown in Figure 3.5, each node is annotated by the physical

operator being used and some optimizer estimates, such as estimated operator cost and

cardinality. The process of binarization includes transforming non-binary query plans into

binary ones by introducing null nodes. Therefore, each tree node has exactly two or zero

children.

Figure 3.5: Operator-level featurization

This featurization approach was first designed in Bao (Marcus et al., 2020) and was

implemented in Odin to feed the deep learning algorithm described in the following section.

3.3.2 Learning Module

The learning module was devised to have a central role within the system and is responsible

for loading pre-trained predictive models to infer the cost of an execution plan having its

vector representation as input and building and storing new ones.

The main focal point of Odin is comparing the execution cost of two plans of the

same query corresponding to different optimizer configurations. Instead of relying on

the optimizer’s estimates and cost model for such comparison, Odin models the cost

estimation of executing a plan as a regression task as follows:

Given a query plan P for a query Q chosen by the optimizer under configu-

ration C, the goal is to predict the cost of executing P in terms of execution

time.

25

3.3. Prototype Implementation

Predictive Models

When it comes to predictive models, both traditional algorithms and deep learning ap-

proaches should be considered. Using deep neural networks is a computationally heavy

task that requires a considerable amount of useful and labeled data. For this reason, more

often than not, it might be an overkill approach for more straightforward problems. One

simpler approach is to use traditional algorithms, such as linear or tree models to train

the predictive model. To make Odin extensible, it supports both types of models allowing

to observe whether the use of deep learning is justified.

Traditional Algorithms Odin employs several types of traditional algorithms such as

linear regression, a regression variant of Support Vector Machines (SVMs), and Random

Forests (RF) models for predicting the execution cost of a given plan.

Figure 3.6: Traditional machine learning algorithms

As shown in Figure 3.6, for these traditional algorithms, each query plan is featurized

into a single vector using the plan-level featurization strategy described earlier.

Tree Convolutional Neural Network A tree convolutional neural network (TCNN)

is a specialized type of CNN that was adapted effectively to query plan trees, providing

the ability to automatically learn a large number of filters on a given training data set for

query execution time prediction (Marcus et al., 2020).

As in conventional convolutional neural networks, a convolution layer applies several

filters to an input tree. The systematic application of the same filter across a query plan

allows discovering patterns in the input data. For instance, these filters may look for

patterns like pairs of hash joins or an index scan over a small relation.

Figure 3.7 shows the overall architecture of a TCNN. As the output of a tree convo-

lution is another tree, multiple layers of tree convolution filters can be stacked. While

26

3.3. Prototype Implementation

Figure 3.7: Tree convolutional neural network

the first convolution layer learns simple features (e.g., recognizing a merge join on top of

a merge join), the last tree convolution layer learns complex features (e.g., recognizing a

left-deep chain of merge joins).

After the query plan tree is passed through a set of tree-based convolutional kernels

to extract a query plan’s structural information, Odin applies dynamic pooling to gather

information over different parts of the tree. Then, a hidden layer and an output layer are

added. Finally, two fully connected layers are used to map the pooled vector to predict

the execution cost of the given plan.

3.3.3 Configuration Tuner

The configuration tuner is the main module within the system. It has the task of interact-

ing with the PostgreSQL client interface and learning to select the set of strategies that

result in the lowest runtime for a particular query. Concerning the actual implementation,

this module has two main functions:

• Predictive model training: The tuner interacts with the learning module to generate

predictive models from a set of SQL queries that the user specifies as input;

• Optimizer configuration tuning: The tuner uses one of the previously generated

predictive models to evaluate the best set of strategies for a particular query served

as input, returning the result of its execution.

Predictive Model Training

Besides loading pre-trained predictive models to infer the cost of an execution plan, the

configuration tuner module also allows generating and storing new ones. Considering the

27

3.3. Prototype Implementation

use of a supervised machine learning approach, Odin relies on historical data to train

one of the supported models. Thus, the model training process is based on two basic

assumptions:

• There is a sample workload (i.e., a set of SQL queries) representative of the user’s

total workload;

• A traditional query optimizer, such as PostgreSQL, should be used to create valid

query execution plans for each query in the sample workload.

Figure 3.8: Odin’s predictive model training

Figure 3.8 illustrates how this module generates predictive models with the specified

sample workload. First, for each query of the sample workload, the configuration tuner

28

3.3. Prototype Implementation

generates several plans under different strategy settings. Then, it interacts with the parser

and featurizer module to obtain a vectorized representation of the query plan. Finally, it

interacts with PostgreSQL to execute each plan and build a model relying on a data set

with the plans vectorized representations and their corresponding execution times.

Configuration Analysis and Selection

This section discusses the approach to configuration analysis and selection. The problem

can be formulated as follows:

Given a query Q, the goal is to find the set of strategy settings, or configuration

C, that results in the lowest execution cost(Q,C), where cost(Q,C) is the cost

of query Q under configuration C.

Figure 3.9: Odin’s configuration analysis and selection

29

3.3. Prototype Implementation

Figure 3.9 illustrates the steps involved in the process. The configuration tuner starts

by interacting with the learning module to load the intended predictive model. Then, it

evaluates the effects of disabling certain strategies by interacting with the PostgreSQL

client interface to generate query plans under such circumstances. Furthermore, using the

cost prediction as its primary input, the configuration tuner sets the configuration with

the lowest predicted execution cost following a greedy enumeration algorithm, which is

described in further detail in the following section. Finally, it returns the query result to

the user.

Plan Enumeration Algorithm This section describes how the configuration tuner

finds the best configuration for a single query in further detail.

Finding the optimal set of strategy settings requires exhaustive search, which is pro-

hibitively expensive. For this reason, similarly to index tuners such as (Chaudhuri and

Narasayya, 1997), the plan enumeration algorithm the configuration tuner uses is defined

greedily, as illustrated in Figure 3.10. To begin with, a configuration of size m (an ar-

bitrary number where m ≤ k) must be chosen as a starting point. Then, the algorithm

iteratively suggests the rest of the configuration until all k possible strategy settings have

been chosen, or no further reduction in execution cost is possible. Each iteration considers

all possible choices and adds the one that results in the highest cost reduction.

Since the algorithm requires an arbitrary number m as a starting point, it is crucial

to find the right balance between the two extremes. On the one hand, if m = 0, the

algorithm takes a pure greedy approach. On the other hand, if m = k, the algorithm

is identical to the naive enumeration algorithm. Therefore, the value of m relative to k

reflects the desired degree of completeness of enumeration and is configurable by the user.

Avoiding Regressions As shown in Section 3.1, one major concern of enabling or

disabling certain strategies is the possibility of causing significant query performance

regressions.

To avoid query regressions, we use a constraint that intends to avoid this kind of oc-

currence. Given a configurable threshold 0 < α < 1, a plan P2 is better than another plan

P1 if PredictedCost (P2) < (1 − α) and more expensive otherwise, where PredictedCost

is the predicted cost of executing a plan. By default, the value of α is set to 0.15 but can

be changed by the user accordingly.

30

3.3. Prototype Implementation

Algorithm 2: Greedy (m, k) enumeration algorithm

Let S = the best m configuration using the naive enumeration algorithm

begin

1. if m = k then exit

2. Choose a new operator O such that cost(S ∪ {O}) ≤ cost(S) for any choice

of

O 6∈ S

3. if cost(S ∪ {Oi}) ≥ cost(S) then exit

else S = S ∪ {Oi}

4. if |S| = k then exit

5. goto 2

output←− configuration with minimum cost

Figure 3.10: Odin’s greedy enumeration algorithm

31

Chapter 4

Performance Evaluation

This chapter evaluates the performance of the considered machine learning approach over

the ability to improve query runtime.

The evaluation shows that Odin outperforms both approaches that use the query opti-

mizer’s cost model to select the best optimizer configuration and the default configuration

(i.e., all boolean flags set to true) on two different experimental workloads.

The experimental analysis is divided into two different parts. Section 4.1, explains the

experimental setup. Section 4.2 evaluates the performance against the PostgreSQL query

optimizer using different workloads. The major facets of the evaluation are:

• Finding whether the presented solution has the ability to improve the overall query

runtime, and measure the improvement in query performance;

• Inferring the training and inference cost;

• Evaluating which type of queries benefit the most from the usage of machine learning

to infer the best execution plan;

• Interpreting the results and trade-offs between using more traditional machine learn-

ing algorithms and deep neural networks;

• Hypothesising about how well the approach could be translated into a real-world

scenario.

32

4.1. Experimental Setup

4.1 Experimental Setup

This section describes all relevant aspects of the PostgreSQL server instance, introduces

the benchmarks that were used and presents the methodology for conducting the experi-

mental evaluation.

4.1.1 PostgreSQL

All performance experiments were executed on a server with an Intel Core i3-4170 CPU

(3.70 GHz) and a total of 4 cores running PostgreSQL 10.12 on Ubuntu 18.04. The system

had 16 GB of RAM and a solid state drive of 128 GB.

Setting Value

seq page cost 1

random page cost 4

cpu tuple cost 0.01

cpu index tuple cost 0.04

cpu operator cost 0.0025

Table 4.1: PostgreSQL settings overview

The experiments were conducted in an out of the box PostgreSQL server, meaning

that every planner constants of the optimizer were set to the default values. Table 4.1

summarizes the used settings. The planner’s estimate of the cost of a disk page sequential

fetch was set to 1. The planner’s estimate of the cost of a non-sequentially-fetched disk

page was set to 4. Furthermore, the planner’s estimate of the cost of processing each

row during a query, processing each index entry during an index scan and processing each

operator or function executed during a query were set to 0.01, 0.04 and 0.0025 respectively.

Finally, the planner’s assumption about the disk cache’s effective size available to a single

query was set to 4 GB.

4.1.2 Workloads

Two separate workloads were considered in the experiments: (1) the TPC-H benchmark

(tpc) and (2) the Join Order Benchmark (JOB) (Gregrahn). The precise details are

outlined in Table 4.2 below.

33

4.1. Experimental Setup

TPC-H Benchmark

The Transaction Processing Performance Council (TPC) benchmark TPC-H has been

extensively used by database software and hardware vendors and the research community.

It intends to evaluate the performance of several decision support systems that process

large volumes of business data and execute queries with a high degree of complexity.

TPC-H comes with various data set sizes to test different scaling factors. It consists of

22 standard query templates, where each query asks a business question and includes the

corresponding query to answer the question.

Join Order Benchmark

While the standard benchmarks like TPC-H have proven their value for evaluating query

engines, they are not valuable benchmarks for the cardinality estimation component. The

reason is that they use data generators based on the same simplifying assumptions that

query optimizers make (i.e., uniformity, independence, the principle of inclusion) to be

able to scale the benchmark data efficiently (Leis et al., 2015).

Instead of using a synthetic data set, the Join Order Benchmark is a workload based

on the Internet Movie Database, a real-world data set containing plenty of information

about movies and related facts about actors, directors, production companies, among

others. It provides a total of 113 analytical SQL queries, which have between 3 and 16

joins, with an average of 8 joins per query.

For the JOB benchmark, we use a further extension of 24 additional queries (Marcus

and Papaemmanouil, 2018). These queries were designed to test systems trained on

regular JOB queries. They use the same relations but have very different semantics.

Workload Database Size (GB) Query Templates (#)

JOB 3.6 137

TPC-H 10 10 22

TPC-H 25 25 22

Table 4.2: Workloads statistics overview.

For the TPC-H benchmark, two different scale factors were considered namely, 10 and

25 (i.e., 10 GB and 25 GB). Ten queries were generated for each one of the 22 standard

34

4.2. Query Performance Analysis

query templates, making a total of 220 queries. On the other hand, the JOB used a

snapshot of data from the Internet Movie Database (IMDb) with 3.6 GB and a total of

137 unique queries.

4.1.3 Modeling

To build and evaluate the predictive models, training and test data sets were derived

from the aforementioned workloads. Since the goal is to improve query runtime by rec-

ommending the optimal configuration on a per-query basis, execution plans under different

configurations for each query following the predictive modeling process were generated.

They are outlined in Figure 3.8. The features from those query plans were extracted

(e.g., optimizer estimates and operators involved) and used the actual query runtime as

the training labels.

To keep the overall experimentation under control, a limit of 5 minutes execution time

per query for the TPC-H 10 GB database was enforced. Within the TPC-H 25 GB, the

execution time limit was set to 15 minutes. Whenever the limit is reached, the query

runtime is set as double the timeout value in the data set.

4.1.4 Metrics and Validation

To evaluate the Odin’s ability to reduce query runtime, a 5-fold cross-validation method

was considered. Within each fold, the models were trained on 80% of the queries. Their

ability to choose the best configuration was evaluated on the remaining 20%. A compar-

ison between the learned approach against two different baselines is provided, namely:

• The default optimizer configuration, where all boolean flags are set to true by de-

fault;

• The configuration tuner, where decisions are made directly based on cost estimates

returned by the optimizer cost model instead of a machine learning model.

4.2 Query Performance Analysis

This section evaluates the effectiveness of the solution over the ability to recommend

optimizer configurations and improve query runtime as a result. It starts with a predictive

35

4.2. Query Performance Analysis

model comparison between different types of algorithms and the feasibility of using deep

learning approaches in this type of problem. It then evaluates whether the machine

learning-based approach can improve the overall query runtime or not compared to the

query optimizer by itself.

For every experiment that considers the greedy enumeration algorithm described in

the previous chapter, the arbitrary number m that defines the initial configuration size

was set to a default value of 2.

4.2.1 Predictive Model Comparison

One of the key goals of the experiments was to evaluate the effectiveness of different types

of machine learning algorithms to predict query runtime. This comparison is based on

how well the different predictive models could be employed in the configuration selection

algorithm and observe to what extent they could improve the overall query performance.

Traditional Algorithms

Initially, the Random Forest and Support Vector Regression models were evaluated, while

treating the problem as a regression task. The Linear Regression model was discarded

altogether due to low accuracy during the model validation phase.

(a) TPC-H workload (b) JOB workload

Figure 4.1: Traditional predictive model comparison for the TPC-H and JOB workloads

Figure 4.1 presents a quantitative comparison between the two. Each plot shows the

performance curves for the TPC-H workload and the JOB workload. They represent

36

4.2. Query Performance Analysis

the overall query runtime over a set of queries that were not part of the training data

set. It is possible to observe that, for the TPC-H workload, Support Vector Regression

outperforms the Random Forest model in the overall execution runtime even though the

runtime of the latter flowed at a steadier pace over time. For the JOB workload, Random

Forest outperforms Support Vector Regression, meaning that it made better execution

plan choices for a short sample of queries, resulting in a meaningful reduction in the

overall execution runtime.

Tree Convolutional Neural Networks

Even though the two algorithms mentioned above can offer more interpretability and

simplicity, in certain scenarios, deep neural networks can increase adaptability at the cost

of needing more quality and quantity of data. To determine if this was the case, further

experiments were carried out using specialized tree convolutional neural networks.

Figure 4.2: Tree convolutional neural network experimental architecture

As shown in Figure 4.2, the used architecture employs three layers of tree convolution,

with output dimensions (32, 16, 8), followed by a dynamic pooling layer and two linear

layers with output dimensions (4, 1). The Rectified Linear Unit (ReLU) activation func-

tions and layer normalization between each layer were considered. Training is performed

with SGD and is ran until 100 epochs elapsed.

To begin with, in contrast to the previous experiments with more traditional algo-

rithms, the number of queries generated per template was increased for the TPC-H work-

load. Increasing the number of queries per template from 10 to 40, making almost 800

queries would make the training process more robust.

37

4.2. Query Performance Analysis

Batch Size RMSE (ms)

4 91 796

8 93 678

16 94 099

Table 4.3: RMSE for different batch sizes

Table 4.3 shows the training results of different batch sizes after 100 epochs elapsed.

Even though the training process flowed at a nice and steady pace, the final RMSEs are

not satisfactory. At this point, it is worth considering whether increasing the original

data set could lead to better results and proceeded with two additional experiments,

which would be done separately:

• Increase the database size from 10 GB to 25 GB and evaluate its impact in training;

• Double the number of queries per template from 40 to 80 to increase the size of the

data set.

Scenario Average RMSE (ms)

Scaled-up database of 25 GB 394 672

80 queries per template 84 401

Table 4.4: RMSE for different scenarios during TCNN training

As shown in Table 4.4, the results with the new scaled-up database were not much

different. While it was expectable that the average query runtime would be higher (i.e.,

539 331 ms), the average RMSE was also higher than desirable (i.e., 394 672 ms) in

comparison.

For the second experiment, doubling the number of queries per template from 40 to

80 resulted in slightly better results. The average RMSE of 84 401 ms roughly translates

into a decrease of almost 10 seconds in comparison to the experiment with a smaller data

set. This leads to conclude that increasing the number of queries per template would help

to achieve better results. However, the cost of generating a more extensive data set would

be impractical in real-world scenarios.

38

4.2. Query Performance Analysis

4.2.2 Optimizer Comparison

Going into more detail in the experimental campaign, the Random Forest model perfor-

mance was evaluated against the out-of-the-box PostgreSQL query optimizer. With this

in mind, a comparison against two different baselines was considered:

• The first one refers to the default optimizer configuration where the PostgreSQL

optimizer has all settings enabled by default;

• The second one represents the enumeration algorithm that makes decisions directly

based on cost estimates returned by the optimizer’s cost model in contrast to the

learned solution that makes its decisions based on the Random Forest model pre-

dictions.

The idea was to infer whether the same results could be obtained and discard the

overhead of collecting execution data and train a machine learning model entirely.

(a) TPC-H workload (b) JOB workload

Figure 4.3: Query runtime comparison between the three approaches

Figure 4.3 summarizes the results using the three different approaches. Using cost

model estimates for the TPC-H queries resulted in a slight improvement over the default

configuration, but the learned model still outperformed both. On the other hand, for

the JOB queries, using the cost model estimates and leaving the optimizer settings to the

39

4.2. Query Performance Analysis

default configuration, resulted in nearly the same execution runtime distribution, whereas

the learned approach surpassed both.

Operator Type Analysis

Evaluating the proposed solution on a query-level basis allowed to delve into the model’s

optimizer settings configuration choices. Throughout the experimental evaluation, the

chosen configuration for each one of the assessed queries was recorded. As a result, it is

possible to infer the number of times a given operator type was selected to be disabled

and discover specific patterns between the two workloads. It is important to note that

the choice of operators is not mutually exclusive, meaning that a given configuration may

simultaneously include two or more operators.

(a) TPC-H workload

(b) JOB workload

Figure 4.4: Number of times an operator was selected to be disabled

40

4.2. Query Performance Analysis

Figure 4.4a shows that only four operator types are dismissed throughout the exper-

imental evaluation for the TPC-H workload, with the sort being the most frequent one.

The choice of disabling the index scan could be explained by the absence of indices, while

sequential scan tends to be one of the most costing types of operations. Bear in mind that

disabling each of these operators does not necessarily mean that it was the right decision,

as there are some cases where performance regressions happen.

Similar to the previous one, Figure 4.4b illustrates which types of operators are dis-

carded throughout the experiments for the JOB workload. Notice how two additional join

operator types are now considered compared to the TPC-H workload. It can be easily

explained by the fact the most of the JOB queries have an average of 8 joins per query,

as mentioned before.

Query Type Analysis

This section evaluates the difference in performance relative to the default set of settings

for each query. To get more insight about which type of queries can benefit the most by

using machine learning, the query performance for each of the executed TPC-H queries

in the experimental phase was analyzed.

Figure 4.5: Runtime difference per query between PostgreSQL and Random Forest for

the TPC-H workload

Figure 4.5 shows the difference in runtime between the plan chosen by our learned

approach and the PostgreSQL default one. Of the 16 TPC-H queries shown above, the

41

4.2. Query Performance Analysis

Random Forest algorithm only incurs regressions on five, and these regressions are all

under 5 seconds. The remaining 11 see performance improvements of up to 20 seconds.

While the learned algorithm does not always choose the best plan compared to the default

configuration, it comes close to almost every query.

Please note that a specific threshold was enforced to avoid unwanted significant query

performance regressions, set to 0.15 by default. Increasing the regression threshold would

help to decrease the probability of such regressions at the cost of decreasing the probability

of potential query performance improvements.

4.2.3 Inference and Training Overhead

A significant concern with any application of machine learning is training time overhead.

Across all workloads, generating the data set is the procedure that takes longer since it

requires that a single query run multiple times with different configurations to make the

training process more robust. As a result, the training process will better capture the

impact of different settings on the final query execution runtime.

For the TPC-H workload:

• Generating the data set takes about 16.4 hours, using ten queries per template;

• Training the model takes up to 12 seconds;

• Inferring the best plan had a maximum increase of 114 milliseconds on planning

time compared to the out-of-the-box PostgreSQL optimizer.

As for the Join Order Benchmark:

• Generating the data set takes about 25 minutes;

• Training the model takes up to 13 seconds;

• Inferring the best plan had a maximum increase of 613 milliseconds on planning

time compared to the out-of-the-box PostgreSQL optimizer.

Since analytic queries generally run for many seconds or minutes, an optimization time

of a few milliseconds may be acceptable in most applications. Seeing that generating the

data set may take up much time, even for a relatively small data set, this work further

proposes new considerations that could be taken into account when applying machine

learning-based query optimization solutions in a real-world scenario.

42

4.2. Query Performance Analysis

4.2.4 Translating Into a Real-World Scenario

Most machine learning algorithms focus on batch training, meaning that all training data

is available beforehand. More recent techniques allow the training process to be done

incrementally while a continuous stream of data is made available over time. Stream

learning models are created incrementally and are updated continuously. Learning in-

crementally from a mini-batch of instances would be essential to out-of-core learning in

query optimization. It would take away the concern of having queries execution history.

In a real-world scenario, changes in data distribution may harm learning. Using an

adaptive sliding window method would allow the algorithms to be more robust to concept

drift changes in dynamic environments such as query optimization. The general idea is

to keep metrics and statistics from a window of variable size. The algorithm decides the

window’s size by cutting the window at different points and analyzing the average of a

particular metric over these two windows. If the difference between the two averages

surpasses a pre-defined threshold, change is detected, and all data before that time is

discarded.

In the context of stream learning, another concern is evaluating the performance of a

learned model. It can be measured using two predominant techniques:

• Using a holdout evaluation where the performance evaluation happens periodically,

at which moment the evaluator will test the learner’s performance on a test set,

formed by yet unseen queries, which will be used to evaluate performance, but not

to train the model;

• Using a prequential evaluation where each data sample serves two purposes. Each

query is analyzed sequentially, in order of arrival, and becomes immediately inac-

cessible. This method involves using each sample to test the model (i.e., make a

prediction) and then use the same sample to train the model. By doing this, the

model is always tested on samples that it has not seen yet.

Being conceived to serve as a platform to encourage the democratization of stream

learning research, scikit-multiflow (Montiel et al., 2018) is a framework that provides

multiple state-of-the-art learning methods, data generators, and evaluators for different

stream learning problems. It builds upon popular open-source frameworks, including

scikit-learn (Pedregosa et al., 2011), in which our solution is built upon.

43

Chapter 5

Conclusions

This dissertation addresses the viability of using machine learning in query optimization

by proposing a middleware layer that can be used on top of a conventional relational

database.

The solution is based on the client interface of the underlying database extending it

with machine learning capabilities to select the best set of strategy settings on a per-query

basis. The prototype was built around three different modules with distinct concerns that

interact with one another to leverage machine learning techniques to improve optimizer

settings recommendation quality with minimal changes to state-of-the-art database sys-

tems. Since it extends the DBMS interface and has minimal impact on the database

clients, it can be further extended with new features to enhance query optimization even

more.

The prototype implementation was built on top of PostgreSQL. It was tested using

two different benchmarks to evaluate the benefits and the overall cost of adding machine

learning guarantees to the underlying query optimizer. The results have shown us that,

when using the TPC-H benchmark, a read-intensive workload, the overall query runtime

decreased by 3%, while with JOB, a real-world data set with an average of 8 joins per

query the impact was as far as 19%. In conclusion, the results have shown that integrating

learned models represents a candidate way of comparing the execution cost of different

plans and results in higher accuracy than using cost model estimates or keeping the

optimizer strategy settings to their default values.

44

5.1. Future Work

5.1 Future Work

One of the main goals for this dissertation was to create a middleware that would be

applied to any relational database by leveraging readily available mechanisms in most

database systems.

The prototype was implemented on top of PostgreSQL. However, it intended to test

the solution on top of other state-of-the-art database systems. In short, a new research

question would be to investigate whether the solution can obtain the same machine learn-

ing capabilities and results and evaluate if the cost of offering these capabilities stays in

the same order of magnitude as the one achieved for PostgreSQL.

Finally, it would be interesting to note that the approach follows a static supervised

machine learning approach, meaning that there is a clear separation between training and

testing phases. Even though this document demonstrated the potential to apply learned

techniques to optimization tuning, the lack of feedback means that, at the current form,

the optimizer may still select the same bad plan repeatedly and never learn from its

previous bad or good choices. As a more promising approach in real-world scenarios,

future work intends to extend the current prototype to allow the training process to be

done incrementally while a continuous stream of data is made available over time, as

described earlier. This will allow to: (1) reduce the overhead of collecting execution data

and generating a data set from it and (2) increase the adaptability to unknown scenarios

by making it able to learn from past experiences.

45

Bibliography

Tpc-h homepage. URL http://www.tpc.org/tpch/.

Ron Avnur and Joseph M. Hellerstein. Eddies: Continuously adaptive query processing.

SIGMOD Rec., 29(2):261–272, May 2000. ISSN 0163-5808. doi: 10.1145/335191.335420.

URL https://doi.org/10.1145/335191.335420.

Peter Bailis, Joseph M. Hellerstein, and Michael Stonebraker, editors. Readings in

Database Systems, 5th Edition. 2015. URL http://www.redbook.io/.

Surajit Chaudhuri and Vivek R. Narasayya. An efficient cost-driven index selection tool

for microsoft sql server. In Proceedings of the 23rd International Conference on Very

Large Data Bases, VLDB ’97, page 146–155, San Francisco, CA, USA, 1997. Morgan

Kaufmann Publishers Inc. ISBN 1558604707.

Richard L. Cole and Goetz Graefe. Optimization of dynamic query evaluation plans.

In Proceedings of the 1994 ACM SIGMOD International Conference on Management

of Data, SIGMOD ’94, page 150–160, New York, NY, USA, 1994. Association for

Computing Machinery. ISBN 0897916395. doi: 10.1145/191839.191872. URL https:

//doi.org/10.1145/191839.191872.

Lúıs Ferreira, Fábio Coelho, and José Pereira. Self-tunable dbms replication with rein-

forcement learning. In IFIP International Conference on Distributed Applications and

Interoperable Systems, pages 131–147. Springer, 2020.

G. Graefe. The cascades framework for query optimization. IEEE Data Eng. Bull., 18:

19–29, 1995.

Goetz Graefe. Query evaluation techniques for large databases. ACM Comput. Surv.,

46

http://www.tpc.org/tpch/
https://doi.org/10.1145/335191.335420
http://www.redbook.io/
https://doi.org/10.1145/191839.191872
https://doi.org/10.1145/191839.191872

Bibliography

25(2):73–169, June 1993. ISSN 0360-0300. doi: 10.1145/152610.152611. URL https:

//doi.org/10.1145/152610.152611.

Goetz Graefe and William J. McKenna. The volcano optimizer generator: Extensibility

and efficient search. In Proceedings of the Ninth International Conference on Data

Engineering, page 209–218, USA, 1993. IEEE Computer Society. ISBN 0818635703.

Gregrahn. gregrahn/join-order-benchmark: Join order benchmark (job). URL https:

//github.com/gregrahn/join-order-benchmark.

Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, and Alfons

Kemper. Learned cardinalities: Estimating correlated joins with deep learning, 2018.

Donald Kossmann. The state of the art in distributed query processing. ACM Comput.

Surv., 32(4):422–469, December 2000. ISSN 0360-0300. doi: 10.1145/371578.371598.

URL https://doi.org/10.1145/371578.371598.

Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and

Thomas Neumann. How good are query optimizers, really? Proc. VLDB Endow.,

9(3):204–215, November 2015. ISSN 2150-8097. doi: 10.14778/2850583.2850594. URL

https://doi.org/10.14778/2850583.2850594.

Ryan Marcus and Olga Papaemmanouil. Deep reinforcement learning for join order enu-

meration. Proceedings of the First International Workshop on Exploiting Artificial In-

telligence Techniques for Data Management, Jun 2018. doi: 10.1145/3211954.3211957.

URL http://dx.doi.org/10.1145/3211954.3211957.

Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Alizadeh, and

Tim Kraska. Bao: Learning to steer query optimizers, 2020.

Jacob Montiel, Jesse Read, Albert Bifet, and Talel Abdessalem. Scikit-multiflow: A multi-

output streaming framework. Journal of Machine Learning Research, 19(72):1–5, 2018.

URL http://jmlr.org/papers/v19/18-251.html.

Fatma Özcan, S. Arpinar, P. Koksal, Cem Evrendilek, and A. Dogac. Dynamic query

optimization in multidatabases. IEEE Data Eng. Bull., 20:38–45, 1997.

47

https://doi.org/10.1145/152610.152611
https://doi.org/10.1145/152610.152611
https://github.com/gregrahn/join-order-benchmark
https://github.com/gregrahn/join-order-benchmark
https://doi.org/10.1145/371578.371598
https://doi.org/10.14778/2850583.2850594
http://dx.doi.org/10.1145/3211954.3211957
http://jmlr.org/papers/v19/18-251.html

Bibliography

M. Tamer Özsu and Patrick Valduriez. Principles of Distributed Database Systems.

Springer Publishing Company, Incorporated, 3rd edition, 2011. ISBN 1441988335.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand

Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent

Dubourg, et al. Scikit-learn: Machine learning in python. Journal of machine learning

research, 12(Oct):2825–2830, 2011.

Global Development Group PostgreSQL, Jul 2021. URL https://www.postgresql.org/.

P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price.

Access path selection in a relational database management system. In Proceedings of

the 1979 ACM SIGMOD International Conference on Management of Data, SIGMOD

’79, page 23–34, New York, NY, USA, 1979. Association for Computing Machinery.

ISBN 089791001X. doi: 10.1145/582095.582099. URL https://doi.org/10.1145/

582095.582099.

Timos K. Sellis. Multiple-query optimization. ACM Trans. Database Syst., 13(1):23–52,

March 1988. ISSN 0362-5915. doi: 10.1145/42201.42203. URL https://doi.org/10.

1145/42201.42203.

Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. Automatic

database management system tuning through large-scale machine learning. In Pro-

ceedings of the 2017 ACM International Conference on Management of Data, SIG-

MOD ’17, pages 1009–1024, 2017. URL https://db.cs.cmu.edu/papers/2017/

p1009-van-aken.pdf.

48

https://www.postgresql.org/
https://doi.org/10.1145/582095.582099
https://doi.org/10.1145/582095.582099
https://doi.org/10.1145/42201.42203
https://doi.org/10.1145/42201.42203
https://db.cs.cmu.edu/papers/2017/p1009-van-aken.pdf
https://db.cs.cmu.edu/papers/2017/p1009-van-aken.pdf

	List of Figures
	List of Tables
	Glossary
	1 Introduction
	1.1 Problem
	1.2 Contributions
	1.3 Document Structure

	2 State of the Art
	2.1 Foundations of Query Processing
	2.1.1 Architecture of a Query Processor
	2.1.2 Basic Optimization Approach and Techniques
	2.1.3 Dynamic Optimization Approach and Techniques

	2.2 Foundations of Machine Learning
	2.2.1 Learning Process Overview
	2.2.2 Types of Learning Algorithms
	2.2.3 Tasks
	2.2.4 Algorithms

	2.3 Machine Learning in Query Processing
	2.3.1 Join Ordering
	2.3.2 Cost Model and Cardinality Estimation
	2.3.3 Performance Tuning

	2.4 Discussion

	3 Odin
	3.1 Preliminary Experiments
	3.2 Architecture
	3.3 Prototype Implementation
	3.3.1 Parser and Featurizer
	3.3.2 Learning Module
	3.3.3 Configuration Tuner

	4 Performance Evaluation
	4.1 Experimental Setup
	4.1.1 PostgreSQL
	4.1.2 Workloads
	4.1.3 Modeling
	4.1.4 Metrics and Validation

	4.2 Query Performance Analysis
	4.2.1 Predictive Model Comparison
	4.2.2 Optimizer Comparison
	4.2.3 Inference and Training Overhead
	4.2.4 Translating Into a Real-World Scenario

	5 Conclusions
	5.1 Future Work

