9 research outputs found

    Environmental analysis for application layer networks

    Get PDF
    Die zunehmende Vernetzung von Rechnern über das Internet lies die Vision von Application Layer Netzwerken aufkommen. Sie umfassen Overlay Netzwerke wie beispielsweise Peer-to-Peer Netzwerke und Grid Infrastrukturen unter Verwendung des TCP/IP Protokolls. Ihre gemeinsame Eigenschaft ist die redundante, verteilte Bereitstellung und der Zugang zu Daten-, Rechen- und Anwendungsdiensten, während sie die Heterogenität der Infrastruktur vor dem Nutzer verbergen. In dieser Arbeit werden die Anforderungen, die diese Netzwerke an ökonomische Allokationsmechanismen stellen, untersucht. Die Analyse erfolgt anhand eines Marktanalyseprozesses für einen zentralen Auktionsmechanismus und einen katallaktischen Markt. --Grid Computing

    A theoretical and computational basis for CATNETS

    Get PDF
    The main content of this report is the identification and definition of market mechanisms for Application Layer Networks (ALNs). On basis of the structured Market Engineering process, the work comprises the identification of requirements which adequate market mechanisms for ALNs have to fulfill. Subsequently, two mechanisms for each, the centralized and the decentralized case are described in this document. These build the theoretical foundation for the work within the following two years of the CATNETS project. --Grid Computing

    Theoretical and Computational Basis for Economical Ressource Allocation in Application Layer Networks - Annual Report Year 1

    Get PDF
    This paper identifies and defines suitable market mechanisms for Application Layer Networks (ALNs). On basis of the structured Market Engineering process, the work comprises the identification of requirements which adequate market mechanisms for ALNs have to fulfill. Subsequently, two mechanisms for each, the centralized and the decentralized case are described in this document. --Grid Computing

    Performance evaluation of a grid resource monitoring and discovery service

    Get PDF
    The Grid Information Service (GIS) is one of the Grid Common Services which make up the basic functions belonging to Grids. This service offers a resource discovery mechanism, of which an implementation is provided by the Monitoring and Discovery Service (MDS- 2) which is part of the Globus Toolkit. Grid applications are typically the users of this resource discovery mechanism; knowledge is thus obtained about the existence of appropriate resources on which to execute jobs. Since these Grid applications are likely to be influenced by dynamic middleware, it is crucial that they experience a reliable performance for the proper utilisation of resources and for accountability purposes. Consequently, the approach taken in this paper is to investigate and evaluate a level of performance obtainable from the MDS. A better understanding of the performance of the GRIS (Grid Resource Information Service) and subsequently the GIIS (Grid Index Information Service), leads to a more standard way of formalising the performance of a Grid Information Service. This is achieved by defining a number of performance metrics which are analysed against a set of different information gathering methods and GRIS back-end implementations

    Self-adaptive Grid Resource Monitoring and discovery

    Get PDF
    The Grid provides a novel platform where the scientific and engineering communities can share data and computation across multiple administrative domains. There are several key services that must be offered by Grid middleware; one of them being the Grid Information Service( GIS). A GIS is a Grid middleware component which maintains information about hardware, software, services and people participating in a virtual organisation( VO). There is an inherent need in these systems for the delivery of reliable performance. This thesis describes a number of approaches which detail the development and application of a suite of benchmarks for the prediction of the process of resource discovery and monitoring on the Grid. A series of experimental studies of the characterisation of performance using benchmarking, are carried out. Several novel predictive algorithms are presented and evaluated in terms of their predictive error. Furthermore, predictive methods are developed which describe the behaviour of MDS2 for a variable number of user requests. The MDS is also extended to include job information from a local scheduler; this information is queried using requests of greatly varying complexity. The response of the MDS to these queries is then assessed in terms of several performance metrics. The benchmarking of the dynamic nature of information within MDS3 which is based on the Open Grid Services Architecture (OGSA), and also the successor to MDS2, is also carried out. The performance of both the pull and push query mechanisms is analysed. GridAdapt (Self-adaptive Grid Resource Monitoring) is a new system that is proposed, built upon the Globus MDS3 benchmarking. It offers self-adaptation, autonomy and admission control at the Index Service, whilst ensuring that the MIDS is not overloaded and can meet its quality-of-service,f or example,i n terms of its average response time for servicing synchronous queries and the total number of queries returned per unit time

    Self-adaptive Grid Resource Monitoring and discovery

    Get PDF
    The Grid provides a novel platform where the scientific and engineering communities can share data and computation across multiple administrative domains. There are several key services that must be offered by Grid middleware; one of them being the Grid Information Service( GIS). A GIS is a Grid middleware component which maintains information about hardware, software, services and people participating in a virtual organisation( VO). There is an inherent need in these systems for the delivery of reliable performance. This thesis describes a number of approaches which detail the development and application of a suite of benchmarks for the prediction of the process of resource discovery and monitoring on the Grid. A series of experimental studies of the characterisation of performance using benchmarking, are carried out. Several novel predictive algorithms are presented and evaluated in terms of their predictive error. Furthermore, predictive methods are developed which describe the behaviour of MDS2 for a variable number of user requests. The MDS is also extended to include job information from a local scheduler; this information is queried using requests of greatly varying complexity. The response of the MDS to these queries is then assessed in terms of several performance metrics. The benchmarking of the dynamic nature of information within MDS3 which is based on the Open Grid Services Architecture (OGSA), and also the successor to MDS2, is also carried out. The performance of both the pull and push query mechanisms is analysed. GridAdapt (Self-adaptive Grid Resource Monitoring) is a new system that is proposed, built upon the Globus MDS3 benchmarking. It offers self-adaptation, autonomy and admission control at the Index Service, whilst ensuring that the MIDS is not overloaded and can meet its quality-of-service,f or example,i n terms of its average response time for servicing synchronous queries and the total number of queries returned per unit time.EThOS - Electronic Theses Online ServiceUniversity of Warwick (UoW)GBUnited Kingdo
    corecore