1,476 research outputs found

    Evaluation and Analysis of the ANSI X3T9.5 (FDDI) PMD and Proposed SMF-PMD as Influenced by Various Fiber Link Characteristics

    Get PDF
    The purpose of this project is to evaluate the operational parameters of the Kennedy Space Center (KSC) fiber optic cable plant. The evaluation is based on the Fiber Distributed Data Interface (FDDI) Physical Medium Dependent (PMD) and Single Mode Fiber (SMF) PMD standards. From the KSC fiber profile, it would be necessary to develop the modifications needed in existing FDDI PMD and proposed SMF-PMD standards to provide for FDDI implementation and operation at KSC. This analysis should examine the major factors that influence the operating conditions of the KSC fiber plant. These factors would include, but are not limited to the number and type of connectors, attenuation and dispersion characteristics of the fiber, non-standard fiber sizes, modal bandwidth, and many other relevant or significant fiber plant characteristics that effect FDDI characteristics. This analysis is needed to gain a better understanding of overall impact that each of these factors have on FDDI performance at KSC

    Spacelab system analysis Marshall Avionics System Testbed (MAST)

    Get PDF
    A synopsis of the visits to avionics test facilities is presented. A list of recommendaions for the MAST facility is also included

    A method for analyzing the performance aspects of the fault-tolerance mechanisms in FDDI

    Get PDF
    The ability of error recovery mechanisms to make the Fiber Distributed Data Interface (FDDI) satisfy real-time performance constraints in the presence of errors is analyzed. A complicating factor in these analyses is the rarity of the error occurrences, which makes direct simulation unattractive. Therefore, a fast simulation technique, called injection simulation, which makes it possible to analyze the performance of FDDI, including its fault tolerance behavior, was developed. The implementation of injection simulation for polling models of FDDI is discussed, along with simulation result

    Data communication network at the ASRM facility

    Get PDF
    The main objective of the report is to present the overall communication network structure for the Advanced Solid Rocket Motor (ASRM) facility being built at Yellow Creek near Iuka, Mississippi. This report is compiled using information received from NASA/MSFC, LMSC, AAD, and RUST Inc. As per the information gathered, the overall network structure will have one logical FDDI ring acting as a backbone for the whole complex. The buildings will be grouped into two categories viz. manufacturing critical and manufacturing non-critical. The manufacturing critical buildings will be connected via FDDI to the Operational Information System (OIS) in the main computing center in B 1000. The manufacturing non-critical buildings will be connected by 10BASE-FL to the Business Information System (BIS) in the main computing center. The workcells will be connected to the Area Supervisory Computers (ASCs) through the nearest manufacturing critical hub and one of the OIS hubs. The network structure described in this report will be the basis for simulations to be carried out next year. The Comdisco's Block Oriented Network Simulator (BONeS) will be used for the network simulation. The main aim of the simulations will be to evaluate the loading of the OIS, the BIS, the ASCs, and the network links by the traffic generated by the workstations and workcells throughout the site

    Space Station Freedom data management system growth and evolution report

    Get PDF
    The Information Sciences Division at the NASA Ames Research Center has completed a 6-month study of portions of the Space Station Freedom Data Management System (DMS). This study looked at the present capabilities and future growth potential of the DMS, and the results are documented in this report. Issues have been raised that were discussed with the appropriate Johnson Space Center (JSC) management and Work Package-2 contractor organizations. Areas requiring additional study have been identified and suggestions for long-term upgrades have been proposed. This activity has allowed the Ames personnel to develop a rapport with the JSC civil service and contractor teams that does permit an independent check and balance technique for the DMS

    Optimisation of a parallel ocean general circulation model

    Get PDF
    Abstract. This paper presents the development of a general-purpose parallel ocean circulation model, for use on a wide range of computer platforms, from traditional scalar machines to workstation clusters and massively parallel processors. Parallelism is provided, as a modular option, via high-level message-passing rou- tines, thus hiding the technical intricacies from the user. An initial implementation highlights that the parallel e?ciency of the model is adversely a?ected by a number of factors, for which optimisations are discussed and implemented. The resulting ocean code is portable and, in particular, allows science to be achieved on local workstations that could otherwise only be undertaken on state-of-the-art supercomputers

    Modeling of the Space Station Freedom data management system

    Get PDF
    The Data Management System (DMS) is the information and communications system onboard Space Station Freedom (SSF). Extensive modeling of the DMS is being conducted throughout NASA to aid in the design and development of this vital system. Activities discussed at NASA Ames Research Center to model the DMS network infrastructure are discussed with focus on the modeling of the Fiber Distributed Data Interface (FDDI) token-ring protocol and experimental testbedding of networking aspects of the DMS

    Architectural impact of FDDI network on scheduling hard real-time traffic

    Get PDF
    The architectural impact on guaranteeing synchronous message deadlines in FDDI (Fiber Distributed Data Interface) token ring networks is examined. The FDDI network does not have facility to support (global) priority arbitration which is a useful facility for scheduling hard real time activities. As a result, it was found that the worst case utilization of synchronous traffic in an FDDI network can be far less than that in a centralized single processor system. Nevertheless, it is proposed and analyzed that a scheduling method can guarantee deadlines of synchronous messages having traffic utilization up to 33 pct., the highest to date

    An investigation of networking techniques for the ASRM facility

    Get PDF
    This report is based on the early design concepts for a communications network for the Advanced Solid Rocket Motor (ASRM) facility being built at Yellow Creek near Iuka, MS. The investigators have participated in the early design concepts and in the evaluation of the initial concepts. The continuing system design effort and any modification of the plan will require a careful evaluation of the required bandwidth of the network, the capabilities of the protocol, and the requirements of the controllers and computers on the network. The overall network, which is heterogeneous in protocol and bandwidth, is being modeled, analyzed, simulated, and tested to obtain some degree of confidence in its performance capabilities and in its performance under nominal and heavy loads. The results of the proposed work should have an impact on the design and operation of the ASRM facility
    corecore