3 research outputs found

    A genetic algorithm based task scheduling system for logistics service robots

    Get PDF
    The demand for autonomous logistics service robots requires an efficient task scheduling system in order to optimise cost and time for the robot to complete its tasks. This paper presents a Genetic algorithm (GA) based task scheduling system for a ground mobile robot that is able to find a global near-optimal travelling path to complete a logistics task of pick-and-deliver items at various locations. In this study, the chromosome representation and the fitness function of GA is carefully designed to cater for a single load logistics robotic task. Two variants of GA crossover are adopted to enhance the performance of the proposed algorithm. The performance of the scheduling is compared and analysed between the proposed GA algorithms and a conventional greedy algorithm in a virtual map and a real map environments that turns out the proposed GA algorithms outperform the greedy algorithm by 40% to 80% improvement

    Neural Network Controller Application on a Visual based Object Tracking and Following Robot

    Get PDF
    Navigation is the main issue for autonomous mobile robot due to its mobility in an unstructured environment. The autonomous object tracking and following robot has been applied in many places such as transport robot in industry and hospital, and as an entertainment robot. This kind of image processing based navigation requires more resources for computational time, however microcontroller currently applied to a robot has limited memory. Therefore, effective image processing from a vision sensor and obstacle avoidances from distance sensors need to be processed efficiently. The application of neural network can be an alternative to get a faster trajectory generation. This paper proposes a simple image processing and combines image processing result with distance information to the obstacles from distance sensors. The combination is conducted by the neural network to get the effective control input for robot motion in navigating through its assigned environment. The robot is deployed in three different environmental setting to show the effectiveness of the proposed method. The experimental results show that the robot can navigate itself effectively within reasonable time periods

    Exploration Of Robotics Need In The Medical Field And Robotic Arm Operation Via Glove Control

    Get PDF
    This thesis project is an exercise in getting hands-on experience in redesigning and modifying a robotic system. It also involves understanding the current need for robotic applications in hospital settings. To achieve the above, a thorough literature review of the current state of robotics in a hospital setting was conducted. Moreover, a number of interviews with medical care professionals were completed. Three main themes were obtained from the literature review and five main themes were obtained from the interviews which will be presented in this thesis report. The next phase of the project involved redesigning a system that is composed of two main parts: a glove and a robotic arm. The glove consists of multiple flex sensors and an inertial measurement unit (IMU) that sends data to an Arduino, which processes the data and sends a signal through Bluetooth transmission to the robotic arm. The robotic arm consists of servo motors that move according to the signal that is received from the glove. The results of the current performance of the system will be presented
    corecore