1,617 research outputs found

    Decoupled Uplink and Downlink in a Wireless System with Buffer-Aided Relaying

    Full text link
    The paper treats a multiuser relay scenario where multiple user equipments (UEs) have a two-way communication with a common Base Station (BS) in the presence of a buffer-equipped Relay Station (RS). Each of the uplink (UL) and downlink (DL) transmission can take place over a direct or over a relayed path. Traditionally, the UL and the DL path of a given two-way link are coupled, that is, either both are direct links or both are relayed links. By removing the restriction for coupling, one opens the design space for a decoupled two-way links. Following this, we devise two protocols: orthogonal decoupled UL/DL buffer-aided (ODBA) relaying protocol and non-orthogonal decoupled UL/DL buffer-aided (NODBA) relaying protocol. In NODBA, the receiver can use successive interference cancellation (SIC) to extract the desired signal from a collision between UL and DL signals. For both protocols, we characterize the transmission decision policies in terms of maximization of the average two-way sum rate of the system. The numerical results show that decoupling association and non-orthogonal radio access lead to significant throughput gains for two-way traffic.Comment: 27 pages, 10 figures, submitted to IEEE Transactions on Communication

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Cooperative Radar and Communications Signaling: The Estimation and Information Theory Odd Couple

    Full text link
    We investigate cooperative radar and communications signaling. While each system typically considers the other system a source of interference, by considering the radar and communications operations to be a single joint system, the performance of both systems can, under certain conditions, be improved by the existence of the other. As an initial demonstration, we focus on the radar as relay scenario and present an approach denoted multiuser detection radar (MUDR). A novel joint estimation and information theoretic bound formulation is constructed for a receiver that observes communications and radar return in the same frequency allocation. The joint performance bound is presented in terms of the communication rate and the estimation rate of the system.Comment: 6 pages, 2 figures, to be presented at 2014 IEEE Radar Conferenc

    Research Issues, Challenges, and Opportunities of Wireless Power Transfer-Aided Full-Duplex Relay Systems

    Get PDF
    We present a comprehensive review for wireless power transfer (WPT)-aided full-duplex (FD) relay systems. Two critical challenges in implementing WPT-aided FD relay systems are presented, that is, pseudo FD realization and high power consumption. Existing time-splitting or power-splitting structure based-WPT-aided FD relay systems can only realize FD operation in one of the time slots or only forward part of the received signal to the destination, belonging to pseudo FD realization. Besides, self-interference is treated as noise and self-interference cancellation (SIC) operation incurs high power consumption at the FD relay node. To this end, a promising solution is outlined to address the two challenges, which realizes consecutive FD realization at all times and forwards all the desired signal to the destination for decoding. Also, active SIC, that is, analog/digital cancellation, is not required by the proposed solution, which effectively reduces the circuit complexity and releases high power consumption at the FD relay node. Specific classifications and performance metrics of WPT-aided FD relay systems are summarized. Some future research is also envisaged for WPT-aided FD systems

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Interference Alignment for Cognitive Radio Communications and Networks: A Survey

    Get PDF
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Interference alignment (IA) is an innovative wireless transmission strategy that has shown to be a promising technique for achieving optimal capacity scaling of a multiuser interference channel at asymptotically high-signal-to-noise ratio (SNR). Transmitters exploit the availability of multiple signaling dimensions in order to align their mutual interference at the receivers. Most of the research has focused on developing algorithms for determining alignment solutions as well as proving interference alignment’s theoretical ability to achieve the maximum degrees of freedom in a wireless network. Cognitive radio, on the other hand, is a technique used to improve the utilization of the radio spectrum by opportunistically sensing and accessing unused licensed frequency spectrum, without causing harmful interference to the licensed users. With the increased deployment of wireless services, the possibility of detecting unused frequency spectrum becomes diminished. Thus, the concept of introducing interference alignment in cognitive radio has become a very attractive proposition. This paper provides a survey of the implementation of IA in cognitive radio under the main research paradigms, along with a summary and analysis of results under each system model.Peer reviewe
    • …
    corecore