8,956 research outputs found

    Situational reasoning for road driving in an urban environment

    Get PDF
    Robot navigation in urban environments requires situational reasoning. Given the complexity of the environment and the behavior specified by traffic rules, it is necessary to recognize the current situation to impose the correct traffic rules. In an attempt to manage the complexity of the situational reasoning subsystem, this paper describes a finite state machine model to govern the situational reasoning process. The logic state machine and its interaction with the planning system are discussed. The approach was implemented on Alice, Team Caltech’s entry into the 2007 DARPA Urban Challenge. Results from the qualifying rounds are discussed. The approach is validated and the shortcomings of the implementation are identified

    Improving RRT for Automated Parking in Real-world Scenarios

    Full text link
    Automated parking is a self-driving feature that has been in cars for several years. Parking assistants in currently sold cars fail to park in more complex real-world scenarios and require the driver to move the car to an expected starting position before the assistant is activated. We overcome these limitations by proposing a planning algorithm consisting of two stages: (1) a geometric planner for maneuvering inside the parking slot and (2) a Rapidly-exploring Random Trees (RRT)-based planner that finds a collision-free path from the initial position to the slot entry. Evaluation of computational experiments demonstrates that improvements over commonly used RRT extensions reduce the parking path cost by 21 % and reduce the computation time by 79.5 %. The suitability of the algorithm for real-world parking scenarios was verified in physical experiments with Porsche Cayenne.Comment: 19 pages, 14 figures, 2 table

    Model Predictive Control Based Trajectory Generation for Autonomous Vehicles - An Architectural Approach

    Full text link
    Research in the field of automated driving has created promising results in the last years. Some research groups have shown perception systems which are able to capture even complicated urban scenarios in great detail. Yet, what is often missing are general-purpose path- or trajectory planners which are not designed for a specific purpose. In this paper we look at path- and trajectory planning from an architectural point of view and show how model predictive frameworks can contribute to generalized path- and trajectory generation approaches for generating safe trajectories even in cases of system failures.Comment: Presented at IEEE Intelligent Vehicles Symposium 2017, Los Angeles, CA, US

    The Critical Role of Public Charging Infrastructure

    Full text link
    Editors: Peter Fox-Penner, PhD, Z. Justin Ren, PhD, David O. JermainA decade after the launch of the contemporary global electric vehicle (EV) market, most cities face a major challenge preparing for rising EV demand. Some cities, and the leaders who shape them, are meeting and even leading demand for EV infrastructure. This book aggregates deep, groundbreaking research in the areas of urban EV deployment for city managers, private developers, urban planners, and utilities who want to understand and lead change

    Exploring the Synergy between two Modular Learning Techniques for Automated Planning

    Get PDF
    In the last decade the emphasis on improving the operational performance of domain independent automated planners has been in developing complex techniques which merge a range of different strategies. This quest for operational advantage, driven by the regular international planning competitions, has not made it easy to study, understand and predict what combinations of techniques will have what effect on a planner’s behaviour in a particular application domain. In this paper, we consider two machine learning techniques for planner performance improvement, and exploit a modular approach to their combination in order to facilitate the analysis of the impact of each individual component. We believe this can contribute to the development of more transparent planning engines, which are designed using modular, interchangeable, and well-founded components. Specifically, we combined two previously unrelated learning techniques, entanglements and relational decision trees, to guide a “vanilla” search algorithm. We report on a large experimental analysis which demonstrates the effectiveness of the approach in terms of performance improvements, resulting in a very competitive planning configuration despite the use of a more modular and transparent architecture. This gives insights on the strengths and weaknesses of the considered approaches, that will help their future exploitation
    • …
    corecore