9,511 research outputs found

    Novel Feedback Calculation Technique for Improved Transmit Scheme

    Get PDF
    Extended balanced space-time block coding (EBSTBC) is able to achieve large coding gain and guarantee full diversity for any number of transmit antennas. Performance of the EBSTBC has been improved with improved transmit scheme (ITS) which is combination of the EBSTBC with transmit antenna selection. Performance of the ITS with a limited number of feedback bits approaches to performance of ideal beamforming which requires ideal channel state information at the transmitter. However, the calculation of feedback information at the receiver employs exhaustive searching scheme which is very complex and energy inefficient process. In this work, a low complexity and energy efficient feedback information scheme for the ITS receiver is proposed. Theoretical and simulation results show that the calculation complexity of feedback information is decreased more than 87% and the proposed scheme yields the same bit error rate performance with the ITS. Moreover, the proposed scheme requires very low addition memory with respect to alternative schemes

    Code diversity in multiple antenna wireless communication

    Full text link
    The standard approach to the design of individual space-time codes is based on optimizing diversity and coding gains. This geometric approach leads to remarkable examples, such as perfect space-time block codes, for which the complexity of Maximum Likelihood (ML) decoding is considerable. Code diversity is an alternative and complementary approach where a small number of feedback bits are used to select from a family of space-time codes. Different codes lead to different induced channels at the receiver, where Channel State Information (CSI) is used to instruct the transmitter how to choose the code. This method of feedback provides gains associated with beamforming while minimizing the number of feedback bits. It complements the standard approach to code design by taking advantage of different (possibly equivalent) realizations of a particular code design. Feedback can be combined with sub-optimal low complexity decoding of the component codes to match ML decoding performance of any individual code in the family. It can also be combined with ML decoding of the component codes to improve performance beyond ML decoding performance of any individual code. One method of implementing code diversity is the use of feedback to adapt the phase of a transmitted signal as shown for 4 by 4 Quasi-Orthogonal Space-Time Block Code (QOSTBC) and multi-user detection using the Alamouti code. Code diversity implemented by selecting from equivalent variants is used to improve ML decoding performance of the Golden code. This paper introduces a family of full rate circulant codes which can be linearly decoded by fourier decomposition of circulant matrices within the code diversity framework. A 3 by 3 circulant code is shown to outperform the Alamouti code at the same transmission rate.Comment: 9 page
    • ā€¦
    corecore