782 research outputs found

    Multiband Spectrum Access: Great Promises for Future Cognitive Radio Networks

    Full text link
    Cognitive radio has been widely considered as one of the prominent solutions to tackle the spectrum scarcity. While the majority of existing research has focused on single-band cognitive radio, multiband cognitive radio represents great promises towards implementing efficient cognitive networks compared to single-based networks. Multiband cognitive radio networks (MB-CRNs) are expected to significantly enhance the network's throughput and provide better channel maintenance by reducing handoff frequency. Nevertheless, the wideband front-end and the multiband spectrum access impose a number of challenges yet to overcome. This paper provides an in-depth analysis on the recent advancements in multiband spectrum sensing techniques, their limitations, and possible future directions to improve them. We study cooperative communications for MB-CRNs to tackle a fundamental limit on diversity and sampling. We also investigate several limits and tradeoffs of various design parameters for MB-CRNs. In addition, we explore the key MB-CRNs performance metrics that differ from the conventional metrics used for single-band based networks.Comment: 22 pages, 13 figures; published in the Proceedings of the IEEE Journal, Special Issue on Future Radio Spectrum Access, March 201

    Performance Analysis of Multi-Antenna Hybrid Satellite-Terrestrial Relay Networks in the Presence of Interference

    Get PDF
    Abstract—The integration of cooperative transmission into satellite networks is regarded as an effective strategy to increase the energy efficiency as well as the coverage of satellite communications. This paper investigates the performance of an amplifyand-forward (AF) hybrid satellite-terrestrial relay network (HSTRN), where the links of the two hops undergo Shadowed- Rician andRayleigh fadingdistributions, respectively.By assuming that a single antenna relay is used to assist the signal transmission between the multi-antenna satellite and multi-antenna mobile terminal, and multiple interferers corrupt both the relay and destination, we first obtain the equivalent end-to-end signal-to-interference-plus-noise ratio (SINR) of the system. Then, an approximate yet very accurate closed-form expression for the ergodic capacity of the HSTRN is derived. The analytical lower bound expressions are also obtained to efficiently evaluate the outage probability (OP) and average symbol error rate (ASER) of the system. Furthermore, the asymptotic OP and ASER expressions are developed at high signal-to-noise ratio (SNR) to reveal the achievable diversity order and array gain of the considered HSTRN. Finally, simulation results are provided to validate of the analytical results, and show the impact of various parameters on the system performance
    • …
    corecore