963 research outputs found

    Turbo trellis-coded hierarchical modulation assisted decode-and-forward cooperation

    No full text
    Hierarchical modulation, which is also known as layered modulation, has been widely adopted across the telecommunication industry. Its strict backward compatibility with single-layer modems and its low complexity facilitate the seamless upgrading of wireless communication services. The potential employment of hierarchical modulation in cooperative communications has the promise of increasing the achievable throughput at a low power consumption. In this paper, we propose a single-relay aided hierarchical modulation based cooperative communication system. The source employs a pair of Turbo Trellis-Coded Modulation schemes relying on specially designed hierarchical modulation, while the relay invokes the Decode-and-Forward protocol. We have analysed the system’s achievable rate as well as its bit error ratio using Monte-Carlo simulations. The results demonstrate that the power consumption of the entire system is reduced to 3.62 dB per time slot by our scheme

    Detect-and-forward relaying aided cooperative spatial modulation for wireless networks

    No full text
    A novel detect-and-forward (DeF) relaying aided cooperative SM scheme is proposed, which is capable of striking a flexible tradeoff in terms of the achievable bit error ratio (BER), complexity and unequal error protection (UEP). More specifically, SM is invoked at the source node (SN) and the information bit stream is divided into two different sets: the antenna index-bits (AI-bits) as well as the amplitude and phase modulation-bits (APM-bits). By exploiting the different importance of the AI-bits and the APM-bits in SM detection, we propose three low-complexity, yet powerful relay protocols, namely the partial, the hybrid and the hierarchical modulation (HM) based DeF relaying schemes. These schemes determine the most appropriate number of bits to be re-modulated by carefully considering their potential benefits and then assigning a specific modulation scheme for relaying the message. As a further benefit, the employment of multiple radio frequency (RF) chains and the requirement of tight inter-relay synchronization (IRS) can be avoided. Moreover, by exploiting the benefits of our low-complexity relaying protocols and our inter-element interference (IEI) model, a low-complexity maximum-likelihood (ML) detector is proposed for jointly detecting the signal received both via the source-destination (SD) and relay-destination (RD) links. Additionally, an upper bound of the BER is derived for our DeF-SM scheme. Our numerical results show that the bound is asymptotically tight in the high-SNR region and the proposed schemes provide beneficial system performance improvements compared to the conventional MIMO schemes in an identical cooperative scenario.<br/

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Adaptive Modulation and Coding and Cooperative ARQ in a Cognitive Radio System

    Full text link
    In this paper, a joint cross-layer design of adaptive modulation and coding (AMC) and cooperative automatic repeat request (C-ARQ) scheme is proposed for a secondary user in a shared-spectrum environment. First, based on the statistical descriptions of the channel, closed-form expressions of the average spectral efficiency (SE) and the average packet loss rate (PLR) are presented. Then, the cross-layer scheme is designed, with the aim of maximizing the average SE while maintaining the average PLR under a prescribed level. An optimization problem is formed, and a sub-optimal solution is found: the target packet error rates (PER) for the secondary system channels are obtained and the corresponding sub-optimal AMC rate adaptation policy is derived based on the target PERs. Finally, the average SE and the average PLR performance of the proposed scheme are presented

    Generalized Area Spectral Efficiency: An Effective Performance Metric for Green Wireless Communications

    Full text link
    Area spectral efficiency (ASE) was introduced as a metric to quantify the spectral utilization efficiency of cellular systems. Unlike other performance metrics, ASE takes into account the spatial property of cellular systems. In this paper, we generalize the concept of ASE to study arbitrary wireless transmissions. Specifically, we introduce the notion of affected area to characterize the spatial property of arbitrary wireless transmissions. Based on the definition of affected area, we define the performance metric, generalized area spectral efficiency (GASE), to quantify the spatial spectral utilization efficiency as well as the greenness of wireless transmissions. After illustrating its evaluation for point-to-point transmission, we analyze the GASE performance of several different transmission scenarios, including dual-hop relay transmission, three-node cooperative relay transmission and underlay cognitive radio transmission. We derive closed-form expressions for the GASE metric of each transmission scenario under Rayleigh fading environment whenever possible. Through mathematical analysis and numerical examples, we show that the GASE metric provides a new perspective on the design and optimization of wireless transmissions, especially on the transmitting power selection. We also show that introducing relay nodes can greatly improve the spatial utilization efficiency of wireless systems. We illustrate that the GASE metric can help optimize the deployment of underlay cognitive radio systems.Comment: 11 pages, 8 figures, accepted by TCo

    Cooperative Transmission Techniques in Wireless Communication Networks

    Get PDF
    Cooperative communication networks have received significant interests from both academia and industry in the past decade due to its ability to provide spatial diversity without the need of implementing multiple transmit and/or receive antennas at the end-user terminals. These new communication networks have inspired novel ideas and approaches to find out what and how performance improvement can be provided with cooperative communications. The objective of this thesis is to design and analyze various cooperative transmission techniques under the two common relaying signal processing methods, namely decode-and-forward (DF) and amplify-and-forward (AF). For the DF method, the thesis focuses on providing performance improvement by mitigating detection errors at the relay(s). In particular, the relaying action is implemented adaptively to reduce the phenomenon of error propagation: whether or not a relay’s decision to retransmit depends on its decision variable and a predefined threshold. First, under the scenario that unequal error protection is employed to transmit different information classes at the source, a relaying protocol in a singlerelay network is proposed and its error performance is evaluated. It is shown that by setting the optimal signal-to-noise ratio (SNR) thresholds at the relay for different information classes, the overall error performance can be significantly improved. Second, for multiple-relay networks, a relay selection protocol, also based on SNR thresholds, is proposed and the optimal thresholds are also provided. Third, an adaptive relaying protocol and a low-complexity receiver are proposed when binary frequency-shift-keying (FSK) modulation is employed and neither the receiver nor the transmitter knows the fading coefficients. It is demonstrated that large performance improvements are possible when the optimal thresholds are implemented at the relays and destination. Finally, under the scenario that there is information feedback from the destination to the relays, a novel protocol is developed to achieve the maximum transmission throughput over a multiple-relay network while the bit-error rate satisfies a given constraint. With the AF method, the thesis examines a fixed-gain multiple-relay network in which the channels are temporally-correlated Rayleigh flat fading. Developed is a general framework for maximum-ratio-combining detection when M-FSK modulation is used and no channel state information is available at the destination. In particular, an upper-bound expression on the system’s error performance is derived and used to verify that the system achieves the maximal diversity order. Simulation results demonstrate that the proposed scheme outperforms the existing schemes for the multiple-relay network under consideration

    An M-QAM Signal Modulation Recognition Algorithm in AWGN Channel

    Full text link
    Computing the distinct features from input data, before the classification, is a part of complexity to the methods of Automatic Modulation Classification (AMC) which deals with modulation classification was a pattern recognition problem. Although the algorithms that focus on MultiLevel Quadrature Amplitude Modulation (M-QAM) which underneath different channel scenarios was well detailed. A search of the literature revealed indicates that few studies were done on the classification of high order M-QAM modulation schemes like128-QAM, 256-QAM, 512-QAM and1024-QAM. This work is focusing on the investigation of the powerful capability of the natural logarithmic properties and the possibility of extracting Higher-Order Cumulant's (HOC) features from input data received raw. The HOC signals were extracted under Additive White Gaussian Noise (AWGN) channel with four effective parameters which were defined to distinguished the types of modulation from the set; 4-QAM~1024-QAM. This approach makes the recognizer more intelligent and improves the success rate of classification. From simulation results, which was achieved under statistical models for noisy channels, manifest that recognized algorithm executes was recognizing in M-QAM, furthermore, most results were promising and showed that the logarithmic classifier works well over both AWGN and different fading channels, as well as it can achieve a reliable recognition rate even at a lower signal-to-noise ratio (less than zero), it can be considered as an Integrated Automatic Modulation Classification (AMC) system in order to identify high order of M-QAM signals that applied a unique logarithmic classifier, to represents higher versatility, hence it has a superior performance via all previous works in automatic modulation identification systemComment: 18 page

    Error performance analysis of n-ary Alamouti scheme with signal space diversity.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Durban.In this dissertation, a high-rate Alamouti scheme with Signal Space Diversity is developed to improve both the spectral efficiency and overall error performance in wireless communication links. This scheme uses high modulation techniques (M-ary quadrature amplitude modulation (M-QAM) and N-ary phase shift keying modulation (N-PSK)). Hence, this dissertation presents the mathematical models, design methodology and theoretical analysis of this high-rate Alamouti scheme with Signal Space Diversity.To improve spectral efficiency in multiple-input multiple-output (MIMO) wireless communications an N-ary Alamouti M-ary quadrature amplitude modulation (M-QAM) scheme is proposed in this thesis. The proposed N-ary Alamouti M-QAM Scheme uses N-ary phase shift keying modulation (NPSK) and M-QAM. The proposed scheme is investigated in Rayleigh fading channels with additive white Gaussian noise (AWGN). Based on union bound a theoretical average bit error probability (ABEP) of the system is formulated. The simulation results validate the theoretical ABEP. Both theoretical results and simulation results show that the proposed scheme improves spectral efficiency by 0.5 bit/sec/Hz in 2 × 4 16-PSK Alamouti 16-QAM system compared to the conventional Alamouti scheme (16-QAM). To further improve the error performance of the proposed N-ary Alamouti M-QAM Scheme an × N-ary Alamouti coded M-QAM scheme with signal space diversity (SSD) is also proposed in this thesis. In this thesis, based on the nearest neighbour (NN) approach a theoretical closed-form expression of the ABEP is further derived in Rayleigh fading channels. Simulation results also validate the theoretical ABEP for N-ary Alamouti M-QAM scheme with SSD. Both theoretical and simulation results further show that the 2 × 4 4-PSK Alamouti 256-QAM scheme with SSD can achieve 0.8 dB gain compared to the 2 × 4 4-PSK Alamouti 256-QAM scheme without SSD

    Five decades of hierarchical modulation and its benefits in relay-aided networking

    No full text
    Hierarchical modulation (HM), which is also known as layered modulation, has been widely adopted across the telecommunication industry. Its strict backward compatibility with single-layer modems and its low complexity facilitate the seamless upgrading of wireless communication services. The specific features of HM may be conveniently exploited for improving the throughput/information-rate of the system without requiring any extra bandwidth, while its complexity may even be lower than that of the equivalent system relying on conventional modulation schemes. As a recent research trend, the potential employment of HM in the context of cooperative communications has also attracted substantial research interests. Motivated by the lower complexity and higher flexibility of HM, we provide a comprehensive survey and conclude with a range of promising future research directions. Our contribution is the conception of a new cooperative communication paradigm relying on turbo trellis-coded modulation-aided twin-layer HM-16QAM and the analytical performance investigation of a four-node cooperative communication network employing a novel opportunistic routing algorithm. The specific performance characteristics evaluated include the distribution of delay, the outage probability, the transmit power of each node, the average packet power consumption, and the system throughput. The simulation results have demonstrated that when transmitting the packets formed by layered modulated symbol streams, our opportunistic routing algorithm is capable of reducing the transmit power required for each node in the network compared with that of the system using the traditional opportunistic routing algorithm. We have also illustrated that the minimum packet power consumption of our system using our opportunistic routing algorithm is also lower than that of the system using the traditional opportunistic routing algorithm
    corecore