2 research outputs found

    Performance Optimization and FPGA Implementation of Real-Time Tone Mapping

    Get PDF
    This brief analyzes the performance of the hardware-based tone mapping operators for compression of high dynamic range images. The bottlenecks of a tone mapping system are determined and a high-performance field programmable gate array (FPGA) implementation of an operator is introduced. The operator utilizes polynomial mapping technique, adaptive to the pixel values; hence preserving high contrast areas. The technique is further optimized for the presented resource-efficient FPGA implementation. We show that the timing optimization does not reduce the image quality, by obtaining high peak signal-to-noise ratio of the resulting images. The timing comparison to the similar implementations shows 2.5 times increase in the achieved throughput, irrespective of the hardware platform

    An Investigation towards Effectiveness in Image Enhancement Process in MPSoC

    Get PDF
    Image enhancement has a primitive role in the vision-based applications. It involves the processing of the input image by boosting its visualization for various applications. The primary objective is to filter the unwanted noises, clutters, sharpening or blur. The characteristics such as resolution and contrast are constructively altered to obtain an outcome of an enhanced image in the bio-medical field. The paper highlights the different techniques proposed for the digital enhancement of images. After surveying these methods that utilize Multiprocessor System-on-Chip (MPSoC), it is concluded that these methodologies have little accuracy and hence none of them are efficiently capable of enhancing the digital biomedical images
    corecore