373,909 research outputs found

    ISIS and META projects

    Get PDF
    The ISIS project has developed a new methodology, virtual synchony, for writing robust distributed software. High performance multicast, large scale applications, and wide area networks are the focus of interest. Several interesting applications that exploit the strengths of ISIS, including an NFS-compatible replicated file system, are being developed. The META project is distributed control in a soft real-time environment incorporating feedback. This domain encompasses examples as diverse as monitoring inventory and consumption on a factory floor, and performing load-balancing on a distributed computing system. One of the first uses of META is for distributed application management: the tasks of configuring a distributed program, dynamically adapting to failures, and monitoring its performance. Recent progress and current plans are reported

    Energy-Efficient Management of Data Center Resources for Cloud Computing: A Vision, Architectural Elements, and Open Challenges

    Full text link
    Cloud computing is offering utility-oriented IT services to users worldwide. Based on a pay-as-you-go model, it enables hosting of pervasive applications from consumer, scientific, and business domains. However, data centers hosting Cloud applications consume huge amounts of energy, contributing to high operational costs and carbon footprints to the environment. Therefore, we need Green Cloud computing solutions that can not only save energy for the environment but also reduce operational costs. This paper presents vision, challenges, and architectural elements for energy-efficient management of Cloud computing environments. We focus on the development of dynamic resource provisioning and allocation algorithms that consider the synergy between various data center infrastructures (i.e., the hardware, power units, cooling and software), and holistically work to boost data center energy efficiency and performance. In particular, this paper proposes (a) architectural principles for energy-efficient management of Clouds; (b) energy-efficient resource allocation policies and scheduling algorithms considering quality-of-service expectations, and devices power usage characteristics; and (c) a novel software technology for energy-efficient management of Clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 12 pages, 5 figures,Proceedings of the 2010 International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA 2010), Las Vegas, USA, July 12-15, 201

    Benchmarking SciDB Data Import on HPC Systems

    Full text link
    SciDB is a scalable, computational database management system that uses an array model for data storage. The array data model of SciDB makes it ideally suited for storing and managing large amounts of imaging data. SciDB is designed to support advanced analytics in database, thus reducing the need for extracting data for analysis. It is designed to be massively parallel and can run on commodity hardware in a high performance computing (HPC) environment. In this paper, we present the performance of SciDB using simulated image data. The Dynamic Distributed Dimensional Data Model (D4M) software is used to implement the benchmark on a cluster running the MIT SuperCloud software stack. A peak performance of 2.2M database inserts per second was achieved on a single node of this system. We also show that SciDB and the D4M toolbox provide more efficient ways to access random sub-volumes of massive datasets compared to the traditional approaches of reading volumetric data from individual files. This work describes the D4M and SciDB tools we developed and presents the initial performance results. This performance was achieved by using parallel inserts, a in-database merging of arrays as well as supercomputing techniques, such as distributed arrays and single-program-multiple-data programming.Comment: 5 pages, 4 figures, IEEE High Performance Extreme Computing (HPEC) 2016, best paper finalis

    dOpenCL: Towards a Uniform Programming Approach for Distributed Heterogeneous Multi-/Many-Core Systems

    Get PDF
    Modern computer systems are becoming increasingly heterogeneous by comprising multi-core CPUs, GPUs, and other accelerators. Current programming approaches for such systems usually require the application developer to use a combination of several programming models (e. g., MPI with OpenCL or CUDA) in order to exploit the full compute capability of a system. In this paper, we present dOpenCL (Distributed OpenCL) – a uniform approach to programming distributed heterogeneous systems with accelerators. dOpenCL extends the OpenCL standard, such that arbitrary computing devices installed on any node of a distributed system can be used together within a single application. dOpenCL allows moving data and program code to these devices in a transparent, portable manner. Since dOpenCL is designed as a fully-fledged implementation of the OpenCL API, it allows running existing OpenCL applications in a heterogeneous distributed environment without any modifications. We describe in detail the mechanisms that are required to implement OpenCL for distributed systems, including a device management mechanism for running multiple applications concurrently. Using three application studies, we compare the performance of dOpenCL with MPI+OpenCL and a standard OpenCL implementation

    Reliable and efficient webserver management for task scheduling in edge-cloud platform

    Get PDF
    The development in the field of cloud webserver management for the execution of the workflow and meeting the quality-of-service (QoS) prerequisites in a distributed cloud environment has been a challenging task. Though, internet of things (IoT) of work presented for the scheduling of the workflow in a heterogeneous cloud environment. Moreover, the rapid development in the field of cloud computing like edge-cloud computing creates new methods to schedule the workflow in a heterogenous cloud environment to process different tasks like IoT, event-driven applications, and different network applications. The current methods used for workflow scheduling have failed to provide better trade-offs to meet reliable performance with minimal delay. In this paper, a novel web server resource management framework is presented namely the reliable and efficient webserver management (REWM) framework for the edge-cloud environment. The experiment is conducted on complex bioinformatic workflows; the result shows the significant reduction of cost and energy by the proposed REWM in comparison with standard webserver management methodology

    A New Distributed Intrusion Detection System Based on Multi-Agent System for Cloud Environment

    Get PDF
    Cloud computing, like any distributed computing system, is continually exposed to many threats and attacks of various origins. Thus, cloud security is now a very important concern for both providers and users. Intrusion detection systems (IDSs) are used to detect attacks in this environment. The goal of security administrators (for both customers and providers) is to prevent and detect attacks while avoiding disruption of the smooth operation of the cloud. Making IDSs efficient is not an easy task in a distributed environment such as the cloud. This problem remains open, and to our knowledge, there are no satisfactory solutions for the automated evaluation and analysis of cloud security. The features of the multi-agent system paradigm, such as adaptability, collaboration, and distribution, make it possible to handle this evolution of cloud computing in an efficient and controlled manner. As a result, multi-agent systems are well suited to the effective management of cloud security. In this paper, we propose an efficient, reliable and secure distributed IDS (DIDS) based on a multi-agent approach to identify and prevent new and complex malicious attacks in this environment. Moreover, some experiments were conducted to evaluate the performance of our model

    Load Balancing in Cloud Computing using Observers Algorithm with Dynamic Weight Table

    Get PDF
    Cloud computing is emerging technology which is a new standard of large scale distributed computing and parallel computing. It provides shared resources, information, software packages and other resources as per client requirements at specific time. As cloud computing is growing rapidly and more users are attracted towards utility computing, better and fast service needs to be provided. For better management of available good load balancing techniques are required. So load balancing in cloud becoming more interested area of research. And through better load balancing in cloud, performance is increased and user gets better services. Here in this paper we have discussed many different load balancing techniques used to solve the issue in cloud computing environment
    • …
    corecore