9,939 research outputs found

    Performance issues for iterative solvers in device simulation

    Get PDF
    Due to memory limitations, iterative methods have become the method of choice for large scale semiconductor device simulation. However, it is well known that these methods still suffer from reliability problems. The linear systems which appear in numerical simulation of semiconductor devices are notoriously ill-conditioned. In order to produce robust algorithms for practical problems, careful attention must be given to many implementation issues. This paper concentrates on strategies for developing robust preconditioners. In addition, effective data structures and convergence check issues are also discussed. These algorithms are compared with a standard direct sparse matrix solver on a variety of problems

    QCD simulations with staggered fermions on GPUs

    Full text link
    We report on our implementation of the RHMC algorithm for the simulation of lattice QCD with two staggered flavors on Graphics Processing Units, using the NVIDIA CUDA programming language. The main feature of our code is that the GPU is not used just as an accelerator, but instead the whole Molecular Dynamics trajectory is performed on it. After pointing out the main bottlenecks and how to circumvent them, we discuss the obtained performances. We present some preliminary results regarding OpenCL and multiGPU extensions of our code and discuss future perspectives.Comment: 22 pages, 14 eps figures, final version to be published in Computer Physics Communication
    • …
    corecore