2 research outputs found

    Performance improvement of wireless mesh networks by using a combination of channel-bonding and multi-channel techniques

    Get PDF
    In the present paper, the use of a combination of channel-bonding and multi-channel techniques is proposed to improve the performance of wireless mesh networks (WMNs). It is necessary to increase the network throughput by broadening the bandwidth, and two approaches to effectively utilize the broadened bandwidth can be considered. One is the multi-channel technique, in which multiple separate frequency channels are used simultaneously for information transmission. The other is the channel-bonding technique used in IEEE 802.11n, which joins multiple frequency channels into a single broader channel. The former can reduce the channel traffic to mitigate the effect of packet collision, while the latter can increase the transmission rate. In the present paper, these two approaches are compared and their respective advantages are clarified in terms of the network throughput and delay performance assuming the same total bandwidth and a CSMA protocol. Our numerical and simulation results indicate that under low-traffic conditions, the channel-bonding technique can achieve low delay, while under traffic congestion conditions, the network performance can be improved by using multi-channel technique. Based on this result, the use of a combination of these two techniques is proposed for a WMN, and show that it is better to use a proper channel technique according to the network traffic condition. The findings of the present study also contribute to improving the performance of a multimedia network, which consists of different traffic types of applications

    Conception des réseaux maillés sans fil à multiples-radios multiples-canaux

    Full text link
    GĂ©nĂ©ralement, les problĂšmes de conception de rĂ©seaux consistent Ă  sĂ©lectionner les arcs et les sommets d’un graphe G de sorte que la fonction coĂ»t est optimisĂ©e et l’ensemble de contraintes impliquant les liens et les sommets dans G sont respectĂ©es. Une modification dans le critĂšre d’optimisation et/ou dans l’ensemble de contraintes mĂšne Ă  une nouvelle reprĂ©sentation d’un problĂšme diffĂ©rent. Dans cette thĂšse, nous nous intĂ©ressons au problĂšme de conception d’infrastructure de rĂ©seaux maillĂ©s sans fil (WMN- Wireless Mesh Network en Anglais) oĂč nous montrons que la conception de tels rĂ©seaux se transforme d’un problĂšme d’optimisation standard (la fonction coĂ»t est optimisĂ©e) Ă  un problĂšme d’optimisation Ă  plusieurs objectifs, pour tenir en compte de nombreux aspects, souvent contradictoires, mais nĂ©anmoins incontournables dans la rĂ©alitĂ©. Cette thĂšse, composĂ©e de trois volets, propose de nouveaux modĂšles et algorithmes pour la conception de WMNs oĂč rien n’est connu Ă  l’ avance. Le premiervolet est consacrĂ© Ă  l’optimisation simultanĂ©e de deux objectifs Ă©quitablement importants : le coĂ»t et la performance du rĂ©seau en termes de dĂ©bit. Trois modĂšles bi-objectifs qui se diffĂ©rent principalement par l’approche utilisĂ©e pour maximiser la performance du rĂ©seau sont proposĂ©s, rĂ©solus et comparĂ©s. Le deuxiĂšme volet traite le problĂšme de placement de passerelles vu son impact sur la performance et l’extensibilitĂ© du rĂ©seau. La notion de contraintes de sauts (hop constraints) est introduite dans la conception du rĂ©seau pour limiter le dĂ©lai de transmission. Un nouvel algorithme basĂ© sur une approche de groupage est proposĂ© afin de trouver les positions stratĂ©giques des passerelles qui favorisent l’extensibilitĂ© du rĂ©seau et augmentent sa performance sans augmenter considĂ©rablement le coĂ»t total de son installation. Le dernier volet adresse le problĂšme de fiabilitĂ© du rĂ©seau dans la prĂ©sence de pannes simples. PrĂ©voir l’installation des composants redondants lors de la phase de conception peut garantir des communications fiables, mais au dĂ©triment du coĂ»t et de la performance du rĂ©seau. Un nouvel algorithme, basĂ© sur l’approche thĂ©orique de dĂ©composition en oreilles afin d’installer le minimum nombre de routeurs additionnels pour tolĂ©rer les pannes simples, est dĂ©veloppĂ©. Afin de rĂ©soudre les modĂšles proposĂ©s pour des rĂ©seaux de taille rĂ©elle, un algorithme Ă©volutionnaire (mĂ©ta-heuristique), inspirĂ© de la nature, est dĂ©veloppĂ©. Finalement, les mĂ©thodes et modĂšles proposĂ©s on Ă©tĂ© Ă©valuĂ©s par des simulations empiriques et d’évĂ©nements discrets.Generally, network design problems consist of selecting links and vertices of a graph G so that a cost function is optimized and all constraints involving links and the vertices in G are met. A change in the criterion of optimization and/or the set of constraints leads to a new representation of a different problem. In this thesis, we consider the problem of designing infrastructure Wireless Mesh Networks (WMNs) where we show that the design of such networks becomes an optimization problem with multiple objectives instead of a standard optimization problem (a cost function is optimized) to take into account many aspects, often contradictory, but nevertheless essential in the reality. This thesis, composed of three parts, introduces new models and algorithms for designing WMNs from scratch. The first part is devoted to the simultaneous optimization of two equally important objectives: cost and network performance in terms of throughput. Three bi-objective models which differ mainly by the approach used to maximize network performance are proposed, solved and compared. The second part deals with the problem of gateways placement, given its impact on network performance and scalability. The concept of hop constraints is introduced into the network design to reduce the transmission delay. A novel algorithm based on a clustering approach is also proposed to find the strategic positions of gateways that support network scalability and increase its performance without significantly increasing the cost of installation. The final section addresses the problem of reliability in the presence of single failures. Allowing the installation of redundant components in the design phase can ensure reliable communications, but at the expense of cost and network performance. A new algorithm is developed based on the theoretical approach of "ear decomposition" to install the minimum number of additional routers to tolerate single failures. In order to solve the proposed models for real-size networks, an evolutionary algorithm (meta-heuristics), inspired from nature, is developed. Finally, the proposed models and methods have been evaluated through empirical and discrete events based simulations
    corecore