3,467 research outputs found

    Learning Spatial-Semantic Context with Fully Convolutional Recurrent Network for Online Handwritten Chinese Text Recognition

    Get PDF
    Online handwritten Chinese text recognition (OHCTR) is a challenging problem as it involves a large-scale character set, ambiguous segmentation, and variable-length input sequences. In this paper, we exploit the outstanding capability of path signature to translate online pen-tip trajectories into informative signature feature maps using a sliding window-based method, successfully capturing the analytic and geometric properties of pen strokes with strong local invariance and robustness. A multi-spatial-context fully convolutional recurrent network (MCFCRN) is proposed to exploit the multiple spatial contexts from the signature feature maps and generate a prediction sequence while completely avoiding the difficult segmentation problem. Furthermore, an implicit language model is developed to make predictions based on semantic context within a predicting feature sequence, providing a new perspective for incorporating lexicon constraints and prior knowledge about a certain language in the recognition procedure. Experiments on two standard benchmarks, Dataset-CASIA and Dataset-ICDAR, yielded outstanding results, with correct rates of 97.10% and 97.15%, respectively, which are significantly better than the best result reported thus far in the literature.Comment: 14 pages, 9 figure

    Signature Verification Approach using Fusion of Hybrid Texture Features

    Full text link
    In this paper, a writer-dependent signature verification method is proposed. Two different types of texture features, namely Wavelet and Local Quantized Patterns (LQP) features, are employed to extract two kinds of transform and statistical based information from signature images. For each writer two separate one-class support vector machines (SVMs) corresponding to each set of LQP and Wavelet features are trained to obtain two different authenticity scores for a given signature. Finally, a score level classifier fusion method is used to integrate the scores obtained from the two one-class SVMs to achieve the verification score. In the proposed method only genuine signatures are used to train the one-class SVMs. The proposed signature verification method has been tested using four different publicly available datasets and the results demonstrate the generality of the proposed method. The proposed system outperforms other existing systems in the literature.Comment: Neural Computing and Applicatio

    Online Handwriting Recognition using HMM

    Get PDF
    Basically handwriting recognition can be divided into two parts as Offline handwriting recognition and Online handwriting recognition. Highly accurate output with predefined constraints can be given by Online handwriting recognition system as it is related to size of vocabulary and writer dependency, printed writing style etc. Hidden markov model increases the success rate of online recognition system. Online handwriting recognition gives additional time information which is not present in Offline system. A Markov process is a random prediction process whose future behavior rely only on its present state, does not depend on the past state. Which means it should satisfy the Markov condition. A Hidden markov model (HMM) is a statistical markov model. In HMM model the system being modeled is assumed to be a markov process with hidden states. Hidden Markov models (HMMs) can be viewed as extensions of discrete-state Markov processes. Human-machine interaction can be drastically getting improved as On-line handwriting recognition technology contains that capability. As instead of using keyboard any person can write anything by hand with the help of digital pen or any similar equipment would be more natural. HMM build a effective mathematical models for characterizing the variance both in time and signal space presented in speech signal
    • …
    corecore