2 research outputs found

    General broadcasting algorithms in one-port wormhole routed hypercubes

    Full text link
    Wormhole routing has been accepted as an efficient switching mechanism in point-to-point interconnection networks. Here the network resource, i.e. node buffers and communication channels, are effectively utilized to deliver message across the network; We consider the problem of broadcasting a message in the hypercue equipped with the wormhole switching mechanism. The model is a generalization of an earlier work and considers a broadcast path-length of {dollar}m\ (1\leq m\leq n{dollar}) in the n-cube with a single-port communication capability. In this thesis, the scheme of e-cube and a Gray code path routing and intermediate reception capability have been adopted in order to solve the problem of broadcasting in one-port wormhole routed hypercubes. Two methods have been suggested; one is based on utilizing the Gray codes (Gray code path-based routing), while the other is based on the recursive partitioning of the cube (cube-based routing). The number of routing steps in both methods are compared to those in the previous results, as well as to the lower bounds derived based on the path-length m assumption. A cube-based and a path-based algorithm give {dollar}T(R)+(k\sb{c}+1)T(m){dollar} and {dollar}k\sb{G} +T(m){dollar} routing steps, respectively. By comparison with routing steps of both algorithms, the performance of the path-based algorithm shows better than that of the cube-based; The results of this work are significant and can be used for immediate implementation in contemporary machines most of which are equipped with wormhole routing and serial communication capability
    corecore