thesis

General broadcasting algorithms in one-port wormhole routed hypercubes

Abstract

Wormhole routing has been accepted as an efficient switching mechanism in point-to-point interconnection networks. Here the network resource, i.e. node buffers and communication channels, are effectively utilized to deliver message across the network; We consider the problem of broadcasting a message in the hypercue equipped with the wormhole switching mechanism. The model is a generalization of an earlier work and considers a broadcast path-length of {dollar}m\ (1\leq m\leq n{dollar}) in the n-cube with a single-port communication capability. In this thesis, the scheme of e-cube and a Gray code path routing and intermediate reception capability have been adopted in order to solve the problem of broadcasting in one-port wormhole routed hypercubes. Two methods have been suggested; one is based on utilizing the Gray codes (Gray code path-based routing), while the other is based on the recursive partitioning of the cube (cube-based routing). The number of routing steps in both methods are compared to those in the previous results, as well as to the lower bounds derived based on the path-length m assumption. A cube-based and a path-based algorithm give {dollar}T(R)+(k\sb{c}+1)T(m){dollar} and {dollar}k\sb{G} +T(m){dollar} routing steps, respectively. By comparison with routing steps of both algorithms, the performance of the path-based algorithm shows better than that of the cube-based; The results of this work are significant and can be used for immediate implementation in contemporary machines most of which are equipped with wormhole routing and serial communication capability

    Similar works