2 research outputs found

    Building an Emulation Environment for Cyber Security Analyses of Complex Networked Systems

    Full text link
    Computer networks are undergoing a phenomenal growth, driven by the rapidly increasing number of nodes constituting the networks. At the same time, the number of security threats on Internet and intranet networks is constantly growing, and the testing and experimentation of cyber defense solutions requires the availability of separate, test environments that best emulate the complexity of a real system. Such environments support the deployment and monitoring of complex mission-driven network scenarios, thus enabling the study of cyber defense strategies under real and controllable traffic and attack scenarios. In this paper, we propose a methodology that makes use of a combination of techniques of network and security assessment, and the use of cloud technologies to build an emulation environment with adjustable degree of affinity with respect to actual reference networks or planned systems. As a byproduct, starting from a specific study case, we collected a dataset consisting of complete network traces comprising benign and malicious traffic, which is feature-rich and publicly available

    Stealth databases : ensuring user-controlled queries in untrusted cloud environments

    Get PDF
    Sensitive data is increasingly being hosted online in ubiquitous cloud storage services. Recent advances in multi-cloud service integration through provider multiplexing and data dispersion have alleviated most of the associated risks for hosting files which are retrieved by users for further processing. However, for structured data managed in databases, many issues remain, including the need to perform operations directly on the remote data to avoid costly transfers. In this paper, we motivate the need for distributed stealth databases which combine properties from structure-preserving dispersed file storage for capacity-saving increased availability with emerging work on structure-preserving encryption for on-demand increased confidentiality with controllable performance degradation. We contribute an analysis of operators executing in map-reduce or map-carry-reduce phases and derive performance statistics. Our prototype, StealthDB, demonstrates that for typical amounts of personal structured data, stealth databases are a convincing concept for taming untrusted and unsafe cloud environments
    corecore