519 research outputs found

    A cross layer multi hop network architecture for wireless Ad Hoc networks

    Get PDF
    In this paper, a novel decentralized cross-layer multi-hop cooperative network architecture is presented. Our architecture involves the design of a simple yet efficient cooperative flooding scheme,two decentralized opportunistic cooperative forwarding mechanisms as well as the design of Routing Enabled Cooperative Medium Access Control (RECOMAC) protocol that spans and incorporates the physical, medium access control (MAC) and routing layers for improving the performance of multihop communication. The proposed architecture exploits randomized coding at the physical layer to realize cooperative diversity. Randomized coding alleviates relay selection and actuation mechanisms,and therefore reduces the coordination among the relays. The coded packets are forwarded via opportunistically formed cooperative sets within a region, without communication among the relays and without establishing a prior route. In our architecture, routing layer functionality is submerged into the MAC layer to provide seamless cooperative communication while the messaging overhead to set up routes, select and actuate relays is minimized. RECOMAC is shown to provide dramatic performance improvements, such as eight times higher throughput and ten times lower end-to-end delay as well as reduced overhead, as compared to networks based on well-known IEEE 802.11 and Ad hoc On Demand Distance Vector (AODV) protocols

    RECOMAC: a cross-layer cooperative network protocol for wireless ad hoc networks

    Get PDF
    A novel decentralized cross-layer multi-hop cooperative protocol, namely, Routing Enabled Cooperative Medium Access Control (RECOMAC) is proposed for wireless ad hoc networks. The protocol architecture makes use of cooperative forwarding methods, in which coded packets are forwarded via opportunistically formed cooperative sets within a region, as RECOMAC spans the physical, medium access control (MAC) and routing layers. Randomized coding is exploited at the physical layer to realize cooperative transmissions, and cooperative forwarding is implemented for routing functionality, which is submerged into the MAC layer, while the overhead for MAC and route set up is minimized. RECOMAC is shown to provide dramatic performance improvements of eight times higher throughput and one tenth of end-to-end delay than that of the conventional architecture in practical wireless mesh networks

    Supporting Service Differentiation with Enhancements of the IEEE 802.11 MAC Protocol: Models and Analysis

    Get PDF
    As one of the fastest growing wireless access technologies, Wireless LANs must evolve to support adequate degrees of service differentiation. Unfortunately, current WLAN standards like IEEE 802.11 Distributed Coordination Function (DCF) lack this ability. Work is in progress to define an enhanced version capable of supporting QoS for multimedia traffic at the MAC layer. In this paper, we aim at gaining insight into three mechanisms to differentiate among traffic categories, i.e., differentiating the minimum contention window size, the Inter-Frame Spacing (IFS) and the length of the packet payload according to the priority of different traffic categories. We propose an analysis model to compute the throughput and packet transmission delays. In additions, we derive approximations to get simpler but more meaningful relationships among different parameters. Comparisons with discrete-event simulation results show that a very good accuracy of performance evaluation can be achieved by using the proposed analysis model

    Improving the Performance of Medium Access Control Protocols for Mobile Adhoc Network with Smart Antennas

    Get PDF
    Requirements for high quality links and great demand for high throughput in Wireless LAN especially Mobile Ad-hoc Network has motivated new enhancements and work in Wireless communications such as Smart Antenna Systems. Smart (adaptive) Antennas enable spatial reuse, increase throughput and they increase the communication range because of the increase directivity of the antenna array. These enhancements quantified for the physical layer may not be efficiently utilized, unless the Media Access Control (MAC) layer is designed accordingly. This thesis implements the behaviours of two MAC protocols, ANMAC and MMAC protocols in OPNET simulator. This method is known as the Physical-MAC layer simulation model. The entire physical layer is written in MATLAB, and MATLAB is integrated into OPNET to perform the necessary stochastic physical layer simulations. The aim is to investigate the performance improvement in throughput and delay of the selected MAC Protocols when using Smart Antennas in a mobile environment. Analytical methods were used to analyze the average throughput and delay performance of the selected MAC Protocols with Adaptive Antenna Arrays in MANET when using spatial diversity. Comparison study has been done between the MAC protocols when using Switched beam antenna and when using the proposed scheme. It has been concluded that the throughput and delay performance of the selected protocols have been improved by the use of Adaptive Antenna Arrays. The throughput and delay performance of ANMAC-SW and ANMAC-AA protocols was evaluated in details against regular Omni 802.11 stations. Our results promise significantly enhancement over Omni 802.11, with a throughput of 25% for ANMAC-SW and 90% for ANMC-AA. ANMAC-AA outperforms ANMAC-SW protocol by 60%. Simulation experiments indicate that by using the proposed scheme with 4 Adaptive Antenna Array per a node, the average throughput in the network can be improved up to 2 to 2.5 times over that obtained by using Switched beam Antennas. The proposed scheme improves the performances of both ANMAC and MMAC protocols but ANMAC outperforms MMAC by 30%

    Performance analysis of wireless LANs: an integrated packet/flow level approach

    Get PDF
    In this paper we present an integrated packet/flow level modelling approach for analysing flow throughputs and transfer times in IEEE 802.11 WLANs. The packet level model captures the statistical characteristics of the transmission of individual packets at the MAC layer, while the flow level model takes into account the system dynamics due to the initiation and completion of data flow transfers. The latter model is a processor sharing type of queueing model reflecting the IEEE 802.11 MAC design principle of distributing the transmission capacity fairly among the active flows. The resulting integrated packet/flow level model is analytically tractable and yields a simple approximation for the throughput and flow transfer time. Extensive simulations show that the approximation is very accurate for a wide range of parameter settings. In addition, the simulation study confirms the attractive property following from our approximation that the expected flow transfer delay is insensitive to the flow size distribution (apart from its mean)

    Performance Evaluation of a Helper Initiated Distributed Cooperative Medium Access Control Protocol for Wireless Networks

    Get PDF
    Cross layer cooperative protocol which exploits the benefits of physical layer cooperative communication, is one of the widely recognized MAC layer protocol design strategies for future wireless networks. This paper presents performance analysis of a cooperative mac and these performance parameters are compared those of the legacy IEEE 802.11 DCF MAC. Appropriate relay station selection is the main hurdle in designing efficient cooperative MAC protocol for wireless networks.  This cooperative mac demonstrated that intermediate relay nodes themselves can initiate cooperation for relaying data frame to the receiver on behalf of the sender. This procedure makes the selection process of a “helper node” more distributed in nature as well as it contributes to increase throughput of a wireless network by reducing the overheads that are usually incurred in the helper selection process. It has been shown by thorough analytical analysis that the proposed cooperative MAC protocol offers higher throughput and lower frame transmission delay in both ideal and error prone wireless environment. These performance metrics are also evaluated while the wireless nodes are mobile as well

    Medium access control with physical-layer-assisted link differentiation

    Get PDF
    In this paper, we develop medium access control (MAC) schemes for both contention and contention-free accesses over wireless local area networks and give performance analysis of these MAC protocols. User detection and multirate adaptation (MRA) modules are proposed in the physical layer (PHY) to assist link differentiation. With these two modules, for contention accesses, a new distributed queuing MAC protocol (PALD-DQMP) is proposed. Based on different users' channel states, PALD-DQMP makes use of a distributed queuing system to schedule transmissions. To support multimedia transmissions, an enhanced PALD-DQMP (E-PALD-DQMP) is designed by providing two-level optimized transmission scheduling for four access categories, thus eliminating both external and internal collisions among mobile stations. For contention-free accesses, based on the same PHY-assisted link differentiation provided by the two modules, a new multipolling MAC protocol (PALD-MPMP) is proposed, which not only reduces the polling overhead but also prioritizes transmissions according to their delay requirements. Performance analysis and simulation results show that our proposed protocols outperform the standard MAC protocols for both delay-sensitive and best-effort traffics. All these improvements are mainly attributed to the awareness of cross-layer channel state information and the consequent MRA scheme. © 2008 IEEE.published_or_final_versio

    Performance Evaluation of a Helper Initiated Distributed Cooperative Medium Access Control Protocol for Wireless Networks

    Get PDF
    Cross layer cooperative protocol which exploits the benefits of physical layer cooperative communication, is one of the widely recognized MAC layer protocol design strategies for future wireless networks. This paper presents performance analysis of a cooperative mac and these performance parameters are compared those of the legacy IEEE 802.11 DCF MAC. Appropriate relay station selection is the main hurdle in designing efficient cooperative MAC protocol for wireless networks.  This cooperative mac demonstrated that intermediate relay nodes themselves can initiate cooperation for relaying data frame to the receiver on behalf of the sender. This procedure makes the selection process of a “helper node” more distributed in nature as well as it contributes to increase throughput of a wireless network by reducing the overheads that are usually incurred in the helper selection process. It has been shown by thorough analytical analysis that the proposed cooperative MAC protocol offers higher throughput and lower frame transmission delay in both ideal and error prone wireless environment. These performance metrics are also evaluated while the wireless nodes are mobile as well
    corecore