10 research outputs found

    Performance Analysis of the Unary Coding Aided SWIPT in a Single-User Z-Channel

    Get PDF
    Radio frequency (RF) signal based simultaneous wireless information and power transfer (SWIPT) has emerged as a promising technique for satisfying both the communication and charging requests of the massively deployed IoT devices. Different from the physical layer and the medium-access-control layer design for coordinating the SWIPT in the RF band, we study its coding-level control from the information theoretical perspective. Due to its practical implementation of the decoder and its flexibility on the codeword structure, the unary code is chosen as a potential joint information and energy encoder. By conceiving the classic Z-channel, the mutual information and the energy harvesting performance of the unary coding aided SWIPT transceiver is analysed. Furthermore, the optimal codeword distribution is obtained for maximising the mutual information, while satisfying the minimum energy harvesting requirement. Our theoretical analysis and the optimal coding design are demonstrated by the numerical results

    Modulation and Coding Design for Simultaneous Wireless Information and Power Transfer

    Get PDF
    In order to satisfy the power demands of IoT devices and thus extend their lifespan, radio frequency (RF) signal aided wireless power transfer (WPT) is exploited for remote charging. Carefully coordinating both the WPT and wireless information transfer (WIT) yields an emerging research trend in simultaneous wireless information and power transfer (SWIPT). However, SWIPT systems designed by assuming Gaussian distributed input signals may suffer from a substantial performance degradation in practice, when the finite alphabetical input is considered. In this article, we will provide a design guide of coding controlled SWIPT and study the modulation design in both single-user and multi-user SWIPT systems. We hope this guide may push SWIPT a step closer from theory to practice

    Unary Coding Controlled Simultaneous Wireless Information and Power Transfer

    Get PDF
    Radio frequency (RF) signals have been relied upon for both wireless information delivery and wireless charging to the massively deployed low-power Internet of Things (IoT) devices. Extensive efforts have been invested in physical layer and medium-access-control layer design for coordinating simultaneous wireless information and power transfer (SWIPT) in RF bands. Different from the existing works, we study the coding controlled SWIPT from the information theoretical perspective with practical transceiver. Due to its practical decoding implementation and its flexibility on the codeword structure, unary code is chosen for joint information and energy encoding. Wireless power transfer (WPT) performance in terms of energy harvested per binary sign and of battery overflow/underflow probability is maximised by optimising the codeword distribution of coded information source, while satisfying required wireless information transfer (WIT) performance in terms of mutual information. Furthermore, a Genetic Algorithm (GA) aided coding design is proposed to reduce the computational complexity. Numerical results characterise the SWIPT performance and validate the optimality of our proposed GA aided unary coding design

    Unary Coding Design for Simultaneous Wireless Information and Power Transfer with Practical M-QAM

    Get PDF
    Relying on the propagation of modulated radio-frequency (RF) signals, we can achieve simultaneous wireless information and power transfer (SWIPT) to support low-power communication devices. In this paper, we proposed a unary coding based SWIPT encoder by considering a practical M-QAM. Markov chains are exploited for characterising coherent binary information source and for modelling the generation process of modulated symbols. Therefore, both mutual information and the average energy harvesting performance at the SWIPT receiver are analysed in semi-closed-form. With the aid of the genetic algorithm, the sub-optimal codeword distribution of the coded information source is obtained by maximising the average energy harvesting performance, while satisfying the requirement of the mutual information. Simulation results demonstrate the advantage of the SWIPT encoder. Moreover, a higher-level unary code and a lower-order M-QAM results in higher WPT performance, when the maximum transmit power of the modulated symbol is fixed

    Unary Coding Design for Simultaneous Wireless Information and Power Transfer With Practical M-QAM

    Get PDF
    Relying on the propagation of modulated radio-frequency (RF) signals, we can achieve simultaneous wireless information and power transfer (SWIPT) to support low-power communication devices. In this paper, we proposed a unary coding based SWIPT encoder by considering a practical M-QAM. Markov chains are exploited for characterising coherent binary information source and for modelling the generation process of modulated symbols. Therefore, both mutual information and the average energy harvesting performance at the SWIPT receiver are analysed in semi-closed-form. With the aid of the genetic algorithm, the sub-optimal codeword distribution of the coded information source is obtained by maximising the average energy harvesting performance, while satisfying the requirement of the mutual information. Simulation results demonstrate the advantage of the SWIPT encoder. Moreover, a higher-level unary code and a lower-order M-QAM results in higher WPT performance, when the maximum transmit power of the modulated symbol is fixed

    Performance Tradeoff Analysis of Hybrid Signaling SWIPT Systems with Nonlinear Power Amplifiers

    Get PDF
    Simultaneous wireless information and power transfer (SWIPT) is a promising technology to achieve wide-area energy transfer by sharing the same radio frequency (RF) signal and infrastructure of legacy wireless communication systems. To enlarge the effective range of energy transfer in practice, it is desirable to have a hybrid signaling SWIPT scheme, which combines a high-power multitone energy signal with a low-power broadband information signal. This paper presents a systematic study on the performance of hybrid signaling SWIPT systems with memoryless nonlinear transmitter power amplifiers (PAs). Using PA efficiency and signal-to-noise-and-distortion ratio (SNDR) as the metrics to measure the efficiency of energy transfer and information transmission, respectively, we derive the tradeoff between these two metrics for two PA classes, two nonlinear PA models, and two SNDR definitions. Our results reveal insights into the fundamental performance tradeoff inherent in SWIPT systems using hybrid signaling schemes

    Orthogonal-Time-Frequency-Space Signal Design for Integrated Data and Energy Transfer: Benefits from Doppler Offsets

    Get PDF
    Integrated data and energy transfer (IDET) is an advanced technology for enabling energy sustainability for massively deployed low-power electronic consumption components. However, the existing work of IDET using the orthogonal-frequency-division-multiplexing (OFDM) waveforms is designed for static scenarios, which would be severely affected by the destructive Doppler offset in high-mobility scenarios. Therefore, we proposed an IDET system based on orthogonal-time-frequency-space (OTFS) waveforms with the imperfect channel assumption, which is capable of counteracting the Doppler offset in high-mobility scenarios. At the transmitter, the OTFS-IDET system superimposes the random data signals and deterministic energy signals in the delay-Doppler (DD) domain with optimally designed amplitudes. The receiver optimally splits the received signal in the power domain for achieving the best IDET performance. After formulating a non-convex optimisation problem, it is transformed into a geometric programming (GP) problem through inequality relaxations to obtain the optimal solution. The simulation demonstrates that a higher amount of energy can be harvested when employing our proposed OTFS-IDET waveforms than the conventional OFDM-IDET ones in high mobility scenarios

    Texture and Colour in Image Analysis

    Get PDF
    Research in colour and texture has experienced major changes in the last few years. This book presents some recent advances in the field, specifically in the theory and applications of colour texture analysis. This volume also features benchmarks, comparative evaluations and reviews

    Sensor Signal and Information Processing II

    Get PDF
    In the current age of information explosion, newly invented technological sensors and software are now tightly integrated with our everyday lives. Many sensor processing algorithms have incorporated some forms of computational intelligence as part of their core framework in problem solving. These algorithms have the capacity to generalize and discover knowledge for themselves and learn new information whenever unseen data are captured. The primary aim of sensor processing is to develop techniques to interpret, understand, and act on information contained in the data. The interest of this book is in developing intelligent signal processing in order to pave the way for smart sensors. This involves mathematical advancement of nonlinear signal processing theory and its applications that extend far beyond traditional techniques. It bridges the boundary between theory and application, developing novel theoretically inspired methodologies targeting both longstanding and emergent signal processing applications. The topic ranges from phishing detection to integration of terrestrial laser scanning, and from fault diagnosis to bio-inspiring filtering. The book will appeal to established practitioners, along with researchers and students in the emerging field of smart sensors processing
    corecore