6,000 research outputs found

    Polarization Decomposition Algorithm for Detection Efficiency Enhancement

    Get PDF
    In the paper, a new polarization decomposition of the optimal detection algorithm in the partially homogeneous environment is presented. Firstly, the detectors Matched Subspace Detector (MSD) and Adaptive Subspace Detector (ASD) are adopted to deal with detection problems in the partially homogeneous environment. Secondly, the fitness function with polarization parameters is equivalently decomposed to enhance time detection efficiency in the algorithm. It makes the multiplication number of the fitness function from square to a linear increase along with the increase in parameters. Simulation results indicate that the proposed decomposition is much more efficient than direct use of the fitness function

    Feature Extracting in the Presence of Environmental Noise, using Subband Adaptive Filtering

    Get PDF
    In this work, a new feature extracting method in noisy environments is proposed. The approach is based on subband decomposition of speech signals followed by adaptive filtering in the noisiest subbbands of speech. The speech decomposition is obtained using low complexity octave filter bank, while adaptive filtering is performed using the normalized least mean square algorithm. The performance of the new feature was evaluated for isolated word speech recognition in the presence of a car noise. The proposed method showed higher recognition accuracy than conventional methods in noisy environments

    EMD-based filtering (EMDF) of low-frequency noise for speech enhancement

    Get PDF
    An Empirical Mode Decomposition based filtering (EMDF) approach is presented as a post-processing stage for speech enhancement. This method is particularly effective in low frequency noise environments. Unlike previous EMD based denoising methods, this approach does not make the assumption that the contaminating noise signal is fractional Gaussian Noise. An adaptive method is developed to select the IMF index for separating the noise components from the speech based on the second-order IMF statistics. The low frequency noise components are then separated by a partial reconstruction from the IMFs. It is shown that the proposed EMDF technique is able to suppress residual noise from speech signals that were enhanced by the conventional optimallymodified log-spectral amplitude approach which uses a minimum statistics based noise estimate. A comparative performance study is included that demonstrates the effectiveness of the EMDF system in various noise environments, such as car interior noise, military vehicle noise and babble noise. In particular, improvements up to 10 dB are obtained in car noise environments. Listening tests were performed that confirm the results
    • …
    corecore