1,050 research outputs found

    Cooperative Relaying in Wireless Networks under Spatially and Temporally Correlated Interference

    Full text link
    We analyze the performance of an interference-limited, decode-and-forward, cooperative relaying system that comprises a source, a destination, and NN relays, placed arbitrarily on the plane and suffering from interference by a set of interferers placed according to a spatial Poisson process. In each transmission attempt, first the transmitter sends a packet; subsequently, a single one of the relays that received the packet correctly, if such a relay exists, retransmits it. We consider both selection combining and maximal ratio combining at the destination, Rayleigh fading, and interferer mobility. We derive expressions for the probability that a single transmission attempt is successful, as well as for the distribution of the transmission attempts until a packet is transmitted successfully. Results provide design guidelines applicable to a wide range of systems. Overall, the temporal and spatial characteristics of the interference play a significant role in shaping the system performance. Maximal ratio combining is only helpful when relays are close to the destination; in harsh environments, having many relays is especially helpful, and relay placement is critical; the performance improves when interferer mobility increases; and a tradeoff exists between energy efficiency and throughput

    MIMO Networks: the Effects of Interference

    Full text link
    Multiple-input/multiple-output (MIMO) systems promise enormous capacity increase and are being considered as one of the key technologies for future wireless networks. However, the decrease in capacity due to the presence of interferers in MIMO networks is not well understood. In this paper, we develop an analytical framework to characterize the capacity of MIMO communication systems in the presence of multiple MIMO co-channel interferers and noise. We consider the situation in which transmitters have no information about the channel and all links undergo Rayleigh fading. We first generalize the known determinant representation of hypergeometric functions with matrix arguments to the case when the argument matrices have eigenvalues of arbitrary multiplicity. This enables the derivation of the distribution of the eigenvalues of Gaussian quadratic forms and Wishart matrices with arbitrary correlation, with application to both single user and multiuser MIMO systems. In particular, we derive the ergodic mutual information for MIMO systems in the presence of multiple MIMO interferers. Our analysis is valid for any number of interferers, each with arbitrary number of antennas having possibly unequal power levels. This framework, therefore, accommodates the study of distributed MIMO systems and accounts for different positions of the MIMO interferers.Comment: Submitted to IEEE Trans. on Info. Theor

    Throughput and Delay Scaling in Supportive Two-Tier Networks

    Full text link
    Consider a wireless network that has two tiers with different priorities: a primary tier vs. a secondary tier, which is an emerging network scenario with the advancement of cognitive radio technologies. The primary tier consists of randomly distributed legacy nodes of density nn, which have an absolute priority to access the spectrum. The secondary tier consists of randomly distributed cognitive nodes of density m=nβm=n^\beta with β2\beta\geq 2, which can only access the spectrum opportunistically to limit the interference to the primary tier. Based on the assumption that the secondary tier is allowed to route the packets for the primary tier, we investigate the throughput and delay scaling laws of the two tiers in the following two scenarios: i) the primary and secondary nodes are all static; ii) the primary nodes are static while the secondary nodes are mobile. With the proposed protocols for the two tiers, we show that the primary tier can achieve a per-node throughput scaling of λp(n)=Θ(1/logn)\lambda_p(n)=\Theta(1/\log n) in the above two scenarios. In the associated delay analysis for the first scenario, we show that the primary tier can achieve a delay scaling of Dp(n)=Θ(nβlognλp(n))D_p(n)=\Theta(\sqrt{n^\beta\log n}\lambda_p(n)) with λp(n)=O(1/logn)\lambda_p(n)=O(1/\log n). In the second scenario, with two mobility models considered for the secondary nodes: an i.i.d. mobility model and a random walk model, we show that the primary tier can achieve delay scaling laws of Θ(1)\Theta(1) and Θ(1/S)\Theta(1/S), respectively, where SS is the random walk step size. The throughput and delay scaling laws for the secondary tier are also established, which are the same as those for a stand-alone network.Comment: 13 pages, double-column, 6 figures, accepted for publication in JSAC 201
    corecore