9,782 research outputs found

    Dispensing with channel estimation: differentially modulated cooperative wireless communications

    No full text
    As a benefit of bypassing the potentially excessive complexity and yet inaccurate channel estimation, differentially encoded modulation in conjunction with low-complexity noncoherent detection constitutes a viable candidate for user-cooperative systems, where estimating all the links by the relays is unrealistic. In order to stimulate further research on differentially modulated cooperative systems, a number of fundamental challenges encountered in their practical implementations are addressed, including the time-variant-channel-induced performance erosion, flexible cooperative protocol designs, resource allocation as well as its high-spectral-efficiency transceiver design. Our investigations demonstrate the quantitative benefits of cooperative wireless networks both from a pure capacity perspective as well as from a practical system design perspective

    H2-ARQ-relaying: spectrum and energy efficiency perspectives

    Get PDF
    In this paper, we propose novel Hybrid Automatic Repeat re-Quest (HARQ) strategies used in conjunction with hybrid relaying schemes, named as H2-ARQ-Relaying. The strategies allow the relay to dynamically switch between amplify-and-forward/compress-and-forward and decode-and-forward schemes according to its decoding status. The performance analysis is conducted from both the spectrum and energy efficiency perspectives. The spectrum efficiency of the proposed strategies, in terms of the maximum throughput, is significantly improved compared with their non-hybrid counterparts under the same constraints. The consumed energy per bit is optimized by manipulating the node activation time, the transmission energy and the power allocation between the source and the relay. The circuitry energy consumption of all involved nodes is taken into consideration. Numerical results shed light on how and when the energy efficiency can be improved in cooperative HARQ. For instance, cooperative HARQ is shown to be energy efficient in long distance transmission only. Furthermore, we consider the fact that the compress-and-forward scheme requires instantaneous signal to noise ratios of all three constituent links. However, this requirement can be impractical in some cases. In this regard, we introduce an improved strategy where only partial and affordable channel state information feedback is needed

    Relay-Induced Error Propagation Reduction for Decode-and-Forward Cooperative Communications

    No full text
    An attractive hybrid method of mitigating the effects of error propagation that may be imposed by the relay node (RN) on the destination node (DN) is proposed. We selected the most appropriate relay location for achieving a specific target Bit Error Ratio (BER) at the relay and signalled the RN-BER to the DN. The knowledge of this BER was then exploited by the decoder at the destination. Our simulation results show that when the BER at the RN is low, we do not have to activate the RN-BER aided decoder at the DN. However, when the RN-BER is high, significant system performance improvements may be achieved by activating the proposed RN-BER based decoding technique at the DN. For example, a power-reduction of up to about 19dB was recorded at a DN BER of 10-4

    Opportunistic Relaying in Time Division Broadcast Protocol with Incremental Relaying

    Get PDF
    In this paper, we investigate the performance of time division broadcast protocol (TDBC) with incremental relaying (IR) when there are multiple available relays. Opportunistic relaying (OR), i.e., the “best” relay is select for transmission to minimize the system’s outage probability, is proposed. Two OR schemes are presented. The first scheme, termed TDBC-OIR-I, selects the “best” relay from the set of relays that can decode both flows of signal from the two sources successfully. The second one, termed TDBC-OIR-II, selects two “best” relays from two respective sets of relays that can decode successfully each flow of signal. The performance, in terms of outage probability, expected rate (ER), and diversity-multiplexing tradeoff (DMT), of the two schemes are analyzed and compared with two TDBC schemes that have no IR but OR (termed TDBC-OR-I and TDBC-OR-II accordingly) and two other benchmark OR schemes that have no direct link transmission between the two sources
    corecore