501 research outputs found

    Energy-Efficient Design of Satellite-Terrestrial Computing in 6G Wireless Networks

    Full text link
    In this paper, we investigate the issue of satellite-terrestrial computing in the sixth generation (6G) wireless networks, where multiple terrestrial base stations (BSs) and low earth orbit (LEO) satellites collaboratively provide edge computing services to ground user equipments (GUEs) and space user equipments (SUEs) over the world. In particular, we design a complete process of satellite-terrestrial computing in terms of communication and computing according to the characteristics of 6G wireless networks. In order to minimize the weighted total energy consumption while ensuring delay requirements of computing tasks, an energy-efficient satellite-terrestrial computing algorithm is put forward by jointly optimizing offloading selection, beamforming design and resource allocation. Finally, both theoretical analysis and simulation results confirm fast convergence and superior performance of the proposed algorithm for satellite-terrestrial computing in 6G wireless networks

    Satellite-MEC Integration for 6G Internet of Things: Minimal Structures, Advances, and Prospects

    Full text link
    The sixth-generation (6G) network is envisioned to shift its focus from the service requirements of human beings' to those of Internet-of-Things (IoT) devices'. Satellite communications are indispensable in 6G to support IoT devices operating in rural or disastrous areas. However, satellite networks face the inherent challenges of low data rate and large latency, which may not support computation-intensive and delay-sensitive IoT applications. Mobile Edge Computing (MEC) is a burgeoning paradigm by extending cloud computing capabilities to the network edge. By utilizing MEC technologies, the resource-limited IoT devices can access abundant computation resources with low latency, which enables the highly demanding applications while meeting strict delay requirements. Therefore, an integration of satellite communications and MEC technologies is necessary to better enable 6G IoT. In this survey, we provide a holistic overview of satellite-MEC integration. We first discuss the main challenges of the integrated satellite-MEC network and propose three minimal integrating structures. For each minimal structure, we summarize the current advances in terms of their research topics, after which we discuss the lessons learned and future directions of the minimal structure. Finally, we outline potential research issues to envision a more intelligent, more secure, and greener integrated satellite-MEC network

    Cost-Efficient Computation Offloading and Service Chain Caching in LEO Satellite Networks

    Full text link
    The ever-increasing demand for ubiquitous, continuous, and high-quality services poses a great challenge to the traditional terrestrial network. To mitigate this problem, the mobile-edge-computing-enhanced low earth orbit (LEO) satellite network, which provides both communication connectivity and on-board processing services, has emerged as an effective method. The main issue in LEO satellites includes finding the optimal locations to host network functions (NFs) and then making offloading decisions. In this article, we jointly consider the problem of service chain caching and computation offloading to minimize the overall cost, which consists of task latency and energy consumption. In particular, the collaboration among satellites, the network resource limitations, and the specific operation order of NFs in service chains are taken into account. Then, the problem is formulated and linearized as an integer linear programming model. Moreover, to accelerate the solution, we provide a greedy algorithm with cubic time complexity. Numerical investigations demonstrate the effectiveness of the proposed scheme, which can reduce the overall cost by around 20% compared to the nominal case where NFs are served in data centers.Comment: 10 pages, 3 figure

    Deep Reinforcement Learning for Privacy-Preserving Task Offloading in Integrated Satellite-Terrestrial Networks

    Full text link
    Satellite communication networks have attracted widespread attention for seamless network coverage and collaborative computing. In satellite-terrestrial networks, ground users can offload computing tasks to visible satellites that with strong computational capabilities. Existing solutions on satellite-assisted task computing generally focused on system performance optimization such as task completion time and energy consumption. However, due to the high-speed mobility pattern and unreliable communication channels, existing methods still suffer from serious privacy leakages. In this paper, we present an integrated satellite-terrestrial network to enable satellite-assisted task offloading under dynamic mobility nature. We also propose a privacy-preserving task offloading scheme to bridge the gap between offloading performance and privacy leakage. In particular, we balance two offloading privacy, called the usage pattern privacy and the location privacy, with different offloading targets (e.g., completion time, energy consumption, and communication reliability). Finally, we formulate it into a joint optimization problem, and introduce a deep reinforcement learning-based privacy-preserving algorithm for an optimal offloading policy. Experimental results show that our proposed algorithm outperforms other benchmark algorithms in terms of completion time, energy consumption, privacy-preserving level, and communication reliability. We hope this work could provide improved solutions for privacy-persevering task offloading in satellite-assisted edge computing

    A Comprehensive Survey on Orbital Edge Computing: Systems, Applications, and Algorithms

    Full text link
    The number of satellites, especially those operating in low-earth orbit (LEO), is exploding in recent years. Additionally, the use of COTS hardware into those satellites enables a new paradigm of computing: orbital edge computing (OEC). OEC entails more technically advanced steps compared to single-satellite computing. This feature allows for vast design spaces with multiple parameters, rendering several novel approaches feasible. The mobility of LEO satellites in the network and limited resources of communication, computation, and storage make it challenging to design an appropriate scheduling algorithm for specific tasks in comparison to traditional ground-based edge computing. This article comprehensively surveys the significant areas of focus in orbital edge computing, which include protocol optimization, mobility management, and resource allocation. This article provides the first comprehensive survey of OEC. Previous survey papers have only concentrated on ground-based edge computing or the integration of space and ground technologies. This article presents a review of recent research from 2000 to 2023 on orbital edge computing that covers network design, computation offloading, resource allocation, performance analysis, and optimization. Moreover, having discussed several related works, both technological challenges and future directions are highlighted in the field.Comment: 18 pages, 9 figures and 5 table

    Energy-efficient satellite joint computation and communication

    Get PDF
    The emerging interest in satellite networks will be a key driver in the path to 6G. The satellite segment must be conceived beyond a mere relay system, where nodes can process data and offload the terrestrial segment. Besides, evidence suggests that energy consumption is among the most important factors for the design of future communication networks. For this motivation, we introduce Sat2C, an energy-efficient algorithm for satellite joint routing, radio resource allocation and task offloading for latency-constrained services. We develop a novel energy model that incorporates the power amplifier subsystem and changes the geometry of the problem. Regarding the routing task, we propose the SHIELD algorithm, based on the submodularity framework and which achieves Pareto-efficient routes. Besides, the RRM problem is formulated as a log-log convex program. The experimental results reveal that Sat2C has low computational complexity, provides routes with low variance in the mean distance and the transmission powers are optimal to ensure energy minimization

    Revolutionizing Future Connectivity: A Contemporary Survey on AI-empowered Satellite-based Non-Terrestrial Networks in 6G

    Full text link
    Non-Terrestrial Networks (NTN) are expected to be a critical component of 6th Generation (6G) networks, providing ubiquitous, continuous, and scalable services. Satellites emerge as the primary enabler for NTN, leveraging their extensive coverage, stable orbits, scalability, and adherence to international regulations. However, satellite-based NTN presents unique challenges, including long propagation delay, high Doppler shift, frequent handovers, spectrum sharing complexities, and intricate beam and resource allocation, among others. The integration of NTNs into existing terrestrial networks in 6G introduces a range of novel challenges, including task offloading, network routing, network slicing, and many more. To tackle all these obstacles, this paper proposes Artificial Intelligence (AI) as a promising solution, harnessing its ability to capture intricate correlations among diverse network parameters. We begin by providing a comprehensive background on NTN and AI, highlighting the potential of AI techniques in addressing various NTN challenges. Next, we present an overview of existing works, emphasizing AI as an enabling tool for satellite-based NTN, and explore potential research directions. Furthermore, we discuss ongoing research efforts that aim to enable AI in satellite-based NTN through software-defined implementations, while also discussing the associated challenges. Finally, we conclude by providing insights and recommendations for enabling AI-driven satellite-based NTN in future 6G networks.Comment: 40 pages, 19 Figure, 10 Tables, Surve

    A Vision and Framework for the High Altitude Platform Station (HAPS) Networks of the Future

    Full text link
    A High Altitude Platform Station (HAPS) is a network node that operates in the stratosphere at an of altitude around 20 km and is instrumental for providing communication services. Precipitated by technological innovations in the areas of autonomous avionics, array antennas, solar panel efficiency levels, and battery energy densities, and fueled by flourishing industry ecosystems, the HAPS has emerged as an indispensable component of next-generations of wireless networks. In this article, we provide a vision and framework for the HAPS networks of the future supported by a comprehensive and state-of-the-art literature review. We highlight the unrealized potential of HAPS systems and elaborate on their unique ability to serve metropolitan areas. The latest advancements and promising technologies in the HAPS energy and payload systems are discussed. The integration of the emerging Reconfigurable Smart Surface (RSS) technology in the communications payload of HAPS systems for providing a cost-effective deployment is proposed. A detailed overview of the radio resource management in HAPS systems is presented along with synergistic physical layer techniques, including Faster-Than-Nyquist (FTN) signaling. Numerous aspects of handoff management in HAPS systems are described. The notable contributions of Artificial Intelligence (AI) in HAPS, including machine learning in the design, topology management, handoff, and resource allocation aspects are emphasized. The extensive overview of the literature we provide is crucial for substantiating our vision that depicts the expected deployment opportunities and challenges in the next 10 years (next-generation networks), as well as in the subsequent 10 years (next-next-generation networks).Comment: To appear in IEEE Communications Surveys & Tutorial
    • …
    corecore