Non-Terrestrial Networks (NTN) are expected to be a critical component of 6th
Generation (6G) networks, providing ubiquitous, continuous, and scalable
services. Satellites emerge as the primary enabler for NTN, leveraging their
extensive coverage, stable orbits, scalability, and adherence to international
regulations. However, satellite-based NTN presents unique challenges, including
long propagation delay, high Doppler shift, frequent handovers, spectrum
sharing complexities, and intricate beam and resource allocation, among others.
The integration of NTNs into existing terrestrial networks in 6G introduces a
range of novel challenges, including task offloading, network routing, network
slicing, and many more. To tackle all these obstacles, this paper proposes
Artificial Intelligence (AI) as a promising solution, harnessing its ability to
capture intricate correlations among diverse network parameters. We begin by
providing a comprehensive background on NTN and AI, highlighting the potential
of AI techniques in addressing various NTN challenges. Next, we present an
overview of existing works, emphasizing AI as an enabling tool for
satellite-based NTN, and explore potential research directions. Furthermore, we
discuss ongoing research efforts that aim to enable AI in satellite-based NTN
through software-defined implementations, while also discussing the associated
challenges. Finally, we conclude by providing insights and recommendations for
enabling AI-driven satellite-based NTN in future 6G networks.Comment: 40 pages, 19 Figure, 10 Tables, Surve