22,910 research outputs found

    Spectral and Energy Efficiency in Cognitive Radio Systems with Unslotted Primary Users and Sensing Uncertainty

    Full text link
    This paper studies energy efficiency (EE) and average throughput maximization for cognitive radio systems in the presence of unslotted primary users. It is assumed that primary user activity follows an ON-OFF alternating renewal process. Secondary users first sense the channel possibly with errors in the form of miss detections and false alarms, and then start the data transmission only if no primary user activity is detected. The secondary user transmission is subject to constraints on collision duration ratio, which is defined as the ratio of average collision duration to transmission duration. In this setting, the optimal power control policy which maximizes the EE of the secondary users or maximizes the average throughput while satisfying a minimum required EE under average/peak transmit power and average interference power constraints are derived. Subsequently, low-complexity algorithms for jointly determining the optimal power level and frame duration are proposed. The impact of probabilities of detection and false alarm, transmit and interference power constraints on the EE, average throughput of the secondary users, optimal transmission power, and the collisions with primary user transmissions are evaluated. In addition, some important properties of the collision duration ratio are investigated. The tradeoff between the EE and average throughput under imperfect sensing decisions and different primary user traffic are further analyzed.Comment: This paper is accepted for publication in IEEE Transactions on Communication

    Throughput and Collision Analysis of Multi-Channel Multi-Stage Spectrum Sensing Algorithms

    Full text link
    Multi-stage sensing is a novel concept that refers to a general class of spectrum sensing algorithms that divide the sensing process into a number of sequential stages. The number of sensing stages and the sensing technique per stage can be used to optimize performance with respect to secondary user throughput and the collision probability between primary and secondary users. So far, the impact of multi-stage sensing on network throughput and collision probability for a realistic network model is relatively unexplored. Therefore, we present the first analytical framework which enables performance evaluation of different multi-channel multi-stage spectrum sensing algorithms for Opportunistic Spectrum Access networks. The contribution of our work lies in studying the effect of the following parameters on performance: number of sensing stages, physical layer sensing techniques and durations per each stage, single and parallel channel sensing and access, number of available channels, primary and secondary user traffic, buffering of incoming secondary user traffic, as well as MAC layer sensing algorithms. Analyzed performance metrics include the average secondary user throughput and the average collision probability between primary and secondary users. Our results show that when the probability of primary user mis-detection is constrained, the performance of multi-stage sensing is, in most cases, superior to the single stage sensing counterpart. Besides, prolonged channel observation at the first stage of sensing decreases the collision probability considerably, while keeping the throughput at an acceptable level. Finally, in realistic primary user traffic scenarios, using two stages of sensing provides a good balance between secondary users throughput and collision probability while meeting successful detection constraints subjected by Opportunistic Spectrum Access communication
    corecore