267 research outputs found

    Probabilistic Rateless Multiple Access for Machine-to-Machine Communication

    Get PDF
    Future machine to machine (M2M) communications need to support a massive number of devices communicating with each other with little or no human intervention. Random access techniques were originally proposed to enable M2M multiple access, but suffer from severe congestion and access delay in an M2M system with a large number of devices. In this paper, we propose a novel multiple access scheme for M2M communications based on the capacity-approaching analog fountain code to efficiently minimize the access delay and satisfy the delay requirement for each device. This is achieved by allowing M2M devices to transmit at the same time on the same channel in an optimal probabilistic manner based on their individual delay requirements. Simulation results show that the proposed scheme achieves a near optimal rate performance and at the same time guarantees the delay requirements of the devices. We further propose a simple random access strategy and characterized the required overhead. Simulation results show the proposed approach significantly outperforms the existing random access schemes currently used in long term evolution advanced (LTE-A) standard in terms of the access delay.Comment: Accepted to Publish in IEEE Transactions on Wireless Communication

    Massive Non-Orthogonal Multiple Access for Cellular IoT: Potentials and Limitations

    Full text link
    The Internet of Things (IoT) promises ubiquitous connectivity of everything everywhere, which represents the biggest technology trend in the years to come. It is expected that by 2020 over 25 billion devices will be connected to cellular networks; far beyond the number of devices in current wireless networks. Machine-to-Machine (M2M) communications aims at providing the communication infrastructure for enabling IoT by facilitating the billions of multi-role devices to communicate with each other and with the underlying data transport infrastructure without, or with little, human intervention. Providing this infrastructure will require a dramatic shift from the current protocols mostly designed for human-to-human (H2H) applications. This article reviews recent 3GPP solutions for enabling massive cellular IoT and investigates the random access strategies for M2M communications, which shows that cellular networks must evolve to handle the new ways in which devices will connect and communicate with the system. A massive non-orthogonal multiple access (NOMA) technique is then presented as a promising solution to support a massive number of IoT devices in cellular networks, where we also identify its practical challenges and future research directions.Comment: To appear in IEEE Communications Magazin

    On the Fundamental Limits of Random Non-orthogonal Multiple Access in Cellular Massive IoT

    Get PDF
    Machine-to-machine (M2M) constitutes the communication paradigm at the basis of Internet of Things (IoT) vision. M2M solutions allow billions of multi-role devices to communicate with each other or with the underlying data transport infrastructure without, or with minimal, human intervention. Current solutions for wireless transmissions originally designed for human-based applications thus require a substantial shift to cope with the capacity issues in managing a huge amount of M2M devices. In this paper, we consider the multiple access techniques as promising solutions to support a large number of devices in cellular systems with limited radio resources. We focus on non-orthogonal multiple access (NOMA) where, with the aim to increase the channel efficiency, the devices share the same radio resources for their data transmission. This has been shown to provide optimal throughput from an information theoretic point of view.We consider a realistic system model and characterise the system performance in terms of throughput and energy efficiency in a NOMA scenario with a random packet arrival model, where we also derive the stability condition for the system to guarantee the performance.Comment: To appear in IEEE JSAC Special Issue on Non-Orthogonal Multiple Access for 5G System

    Rateless Coding for Gaussian Channels

    Get PDF
    A rateless code-i.e., a rate-compatible family of codes-has the property that codewords of the higher rate codes are prefixes of those of the lower rate ones. A perfect family of such codes is one in which each of the codes in the family is capacity-achieving. We show by construction that perfect rateless codes with low-complexity decoding algorithms exist for additive white Gaussian noise channels. Our construction involves the use of layered encoding and successive decoding, together with repetition using time-varying layer weights. As an illustration of our framework, we design a practical three-rate code family. We further construct rich sets of near-perfect rateless codes within our architecture that require either significantly fewer layers or lower complexity than their perfect counterparts. Variations of the basic construction are also developed, including one for time-varying channels in which there is no a priori stochastic model.Comment: 18 page

    Performance Analysis of NOMA Multicast Systems Based on Rateless Codes with Delay Constraints

    Get PDF
    To achieve an efficient and reliable data transmission in time-varying conditions, a novel non-orthogonal multiple access (NOMA) transmission scheme based on rateless codes (NOMA-RC) is proposed in the multicast system in this paper. Using rateless codes at the packet level, the system can generate enough encoded data packets according to users’ requirements to cope with adverse environments. The performance of the NOMA-RC multicast system with delay constraints is analyzed over Rayleigh fading channels. The closed-form expressions for the frame error ratio and the average transmission time are derived for two cases which are a broadcast communication scenario (Scenario 1) and a relay communication scenario (Scenario 2). Under the condition that the quality of service for the edge user is satisfied, an optimization model of power allocation is established to maximize the sum rate. Simulation results show that Scenario 2 can provide better block error ratio performance and exhibit less transmission time than Scenario 1. When compared with orthogonal multiple access (OMA) with rateless codes system, the proposed system can save on the transmission time and improve the system throughput

    On the Energy Efficiency of LT Codes in Proactive Wireless Sensor Networks

    Full text link
    This paper presents an in-depth analysis on the energy efficiency of Luby Transform (LT) codes with Frequency Shift Keying (FSK) modulation in a Wireless Sensor Network (WSN) over Rayleigh fading channels with pathloss. We describe a proactive system model according to a flexible duty-cycling mechanism utilized in practical sensor apparatus. The present analysis is based on realistic parameters including the effect of channel bandwidth used in the IEEE 802.15.4 standard, active mode duration and computation energy. A comprehensive analysis, supported by some simulation studies on the probability mass function of the LT code rate and coding gain, shows that among uncoded FSK and various classical channel coding schemes, the optimized LT coded FSK is the most energy-efficient scheme for distance d greater than the pre-determined threshold level d_T , where the optimization is performed over coding and modulation parameters. In addition, although the optimized uncoded FSK outperforms coded schemes for d < d_T , the energy gap between LT coded and uncoded FSK is negligible for d < d_T compared to the other coded schemes. These results come from the flexibility of the LT code to adjust its rate to suit instantaneous channel conditions, and suggest that LT codes are beneficial in practical low-power WSNs with dynamic position sensor nodes.Comment: accepted for publication in IEEE Transactions on Signal Processin

    Permutation Trellis Coded Multi-level FSK Signaling to Mitigate Primary User Interference in Cognitive Radio Networks

    Full text link
    We employ Permutation Trellis Code (PTC) based multi-level Frequency Shift Keying signaling to mitigate the impact of Primary Users (PUs) on the performance of Secondary Users (SUs) in Cognitive Radio Networks (CRNs). The PUs are assumed to be dynamic in that they appear intermittently and stay active for an unknown duration. Our approach is based on the use of PTC combined with multi-level FSK modulation so that an SU can improve its data rate by increasing its transmission bandwidth while operating at low power and not creating destructive interference for PUs. We evaluate system performance by obtaining an approximation for the actual Bit Error Rate (BER) using properties of the Viterbi decoder and carry out a thorough performance analysis in terms of BER and throughput. The results show that the proposed coded system achieves i) robustness by ensuring that SUs have stable throughput in the presence of heavy PU interference and ii) improved resiliency of SU links to interference in the presence of multiple dynamic PUs.Comment: 30 pages, 12 figure
    • …
    corecore