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Abstract—A rateless code—i.e., a rate-compatible family of
codes—has the property that codewords of the higher rate caxb
are prefixes of those of the lower rate ones. A perfect family
of such codes is one in which each of the codes in the family is
capacity-achieving. We show by construction that perfect ateless
codes with low-complexity decoding algorithms exist for aditive
white Gaussian noise channels. Our construction involveshe
use of layered encoding and successive decoding, togetheithw
repetition using time-varying layer weights. As an illustration of
our framework, we design a practical three-rate code family We
further construct rich sets of near-perfect rateless codewithin
our architecture that require either significantly fewer layers or
lower complexity than their perfect counterparts. Variations of
the basic construction are also developed, including one fdime-
varying channels in which there is no a priori stochastic moel.

Index Terms—Incremental redundancy, rate-compatible punc-
tured codes, hybrid ARQ (H-ARQ), static broadcasting.

I. INTRODUCTION

HE design of effective “rateless” codes has received réchieving, low- : S , ClE
d&pnstructed from layering, repetition, and time-varyingjght-

newed strong interest in the coding community, motivat

SNR is used in a straightforward manner to build a rateless
codebook that operates at many SNRs.

The encoding in our architecture exploits three key ingredi
ents: layering, repetition, and time-varying weighting. [By-
ering, we mean the creation of a code by a linear combination
of subcodes. By repetition, we mean the use of simple linear
redundancy. Finally, by time-varying weighting, we meaatth
the (complex) weights in the linear combinations in eachycop
are different. We show that with the appropriate combimatio
of these ingredients, if the base codes are capacity-doliev
so will be the resulting rateless code.

In addition to achieving capacity in our architecture, we
seek to ensure that if the base code can be decoded with low
complexity, so can the rateless code. This is accomplished
by imposing the constraint that the layered encoding be
successively decodable—i.e., that the layers can be ddcode
one at a time, treating as yet undecoded layers as noise.

Hence, our main result is the construction of capacity-
complexity rateless codes, i.e., ratelassdes

by a number of emerging applications. Such codes havdng: that are successively decodable.

long history, and have gone by various names over time, 'N€ Paper is organized as follows. In Sectloh Il we put
among them incremental redundancy codes, rate-compatim‘é problem in context and summarize related work and
punctured codes, hybrid automatic repeat request (ARQ) lyfil,oproaches. In Scho_E]III we mtroduce the _channel and
Il codes, and static broadcast codés [1]-[10]. This pap@fStem rr_lodeI: In S,eCt'OE]V we motivate and |Ilustrae our
focuses on the design of such codes for average power limife@'Struction with a simple special-case example. In Sefiflo
additive white Gaussian noise (AWGN) channels. Speciﬁpallwe_ develop our general construction and show that W|.th|n it
we develop techniques for mapping standard good singdf-rﬁf('s'[_ perfec_t rateless codes for at least some ranges oéstie
codes for the AWGN channel into good rateless codes that gin SectioflM| we develop and analyze specific instances of

efficient, practical, and can operate at rates of multipéHy.
As such, they represent an attractive alternative to fcawdit
hybrid ARQ solutions for a variety of wireless and relate
applications.

More specifically, we show that the successful techniqu

employed to construct low-complexity codes for the staddaf®
AWGN channel—such as those arising out of turbo and lov:
density parity check (LDPC) codes—can be leveraged to co‘:ﬁS

struct rateless codes. In particular, we develop an athite

in which a single codebook designed to operate at a single
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our codes generated numerically. In Secfion VII, we show tha
within the constraints of our construction rateless codeaify

tprget ceiling and range can be constructed that are ailyitra

close to perfect in an appropriate sense. In Sedtion VIII we
ggake some comments on design and implementation issues,
nd in Sectiol IX we describe the results of simulations with
ur constructions. In Sectidnd X, we discuss and developlsimp
tensions of our basic construction to time-varying cledsin
inally, SectiorX|l provides some concluding remarks.

Il. BACKGROUND

From a purely information theoretic perspective the proble
of rateless transmission is well understood; see Shulm&h [1
for a comprehensive treatment. Indeed, for channels having
one maximizing input distribution, a codebook drawn indepe
dently and identically distributed (i.i.d.) at random frais
distribution will be good with high probability, when truated
to (a finite number of) different lengths. Phrased diffelygnt
in such cases random codes are rateless codes.

Constructing good codes that also have computationally
efficient encoders and decoders requires more effort. A re-
markable example of such codes fmasurechannels are the
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recent Raptor codes of Shokrollahi [12], which build on theector of N i.i.d. complex, circularly-symmetric Gaussian

LT codes of Luby[[13],[[14]. An erasure channel model (forandom variables of variance?, independent across blocks

packets) is most appropriate for rateless coding architest m = 1,2,.... The channel input is limited to average power

anchored at the application layer, where there is little @r nP per symbol. In our model, the channel gainand noise

access to the physical layer. variances? are known a priori at the receiver but not at the
Apart from erasure channels, there is a growing interest iransmittel

exploiting rateless codes closer to the physical layer,rethe The block lengthV has no important role in the analysis
AWGN models are more natural; see, e.d..|[15] and thgat follows. It is, however, the block length of the baseeod
references therein. Much less is known about the limits gked in the rateless construction. As the base code penficena
what is possible in this realm, which has been the focus ghntrols the overall code performance, to approach channel
traditional hybrld ARQ research. CapacityN must be |arge_

One line of work involves extending Raptor code construc- The encoder transmits a messageby generating a se-
tions to binary-input AWGN channels (among others). In thi&uence of code blocks (incremental redundancy black@)),
area, [l16], [17] have shown that no degree distributionvalo , (, y *  "The receiver accumulates sufficiently many re-
such codes to approach capacity simultaneously at diﬂfer%%ive(’j blocksy:, ys, ...to recoverw. The channel gain3
signal to noise ratios (SNRs). Nevertheless, this doesuiet r ay be viewed as a variable parameter in the model; more
out the possibility that such codes, when suitably deSignqucremental redundancy is needed to recovemwhen 3 i's
can be near capacity at multiple SNRs. small than wheng is large.

A second approach is based on puncturing of low-rate . ant feat ¢ thi del is that th .
capacity-approaching binary codes such as turbo and LDP N important teature of this modet 1S thal the receiver
codes [[8], [8], 9], [15], [18], [[19], or extending a higher_always starts receiving blocks from index = 1. It does not

C e T e e R egceive an arbitrary subsequence of blocks, as might be the

rate such code, or using a combination of code puncturiﬁ i deli broadcast ch | that it
and extension [20]. When iterative decoding is involvea;hsy C45€ I ON€ Were moaeling a broadcast channel that permits

approaches lead to performance tradeoffs at differens+ate “tuning in” to an ongoing transmission.
improving performance at one rate comes at the expense o¥Ve now define some basic terminology and notation. Unless
the performance at other rates. While practical codes hdveted otherwise, all logarithms are base 2, all symbols #eno
been constructed in this mannéi [3], [20], it remains to He@mplex quantities, and all rates are in bits per complex
understood how close, in principle, one can come to capaciymbol (channel use), i.e., b/s/Hz. We use for transpose
simultaneously at multiple SNRs, particularly when not afind- T for Hermitian (conjugate transpose) operators. Vectors
SNRs are low. and matrices are denoted using bold face, random variables
Finally, for the higher rates typically of interest, whichare denoted using sans-serif fonts, while sample values use
necessitate higher-order (e.g., 16-QAM and larger) constéegular (serif) fonts.
lations, the modulation used with such binary codes becomedVe define theceiling rateof the rateless code as the highest
important. In turn, such modulation tends to further coggt rate R at which the code can operate, i.e., the effective rate
the iterative decoding, imposing additional code desigal-chif the message is decoded from the single received bjack
lenges. Constellation rearrangement and other technltaies hence, a message consists\oR information bits. Associated
been developed to at least partially address such challengéth this rate is an SNRhreshold which is the minimum SNR
[27]-[24], but as yet do not offer a complete solution. Alterrequired in the realized channel for decoding to be possible
natively, suitably designed binary codes can be, in priecip from this single block. This SNR threshold can equivalebgy
combined with bit-interleaved coded modulation (BICM) foexpressed in the form of a channel gain threshold. Simijlarly
such applications; for examplée, [25] explores the design tfthe message is decoded from > 2 received blocks,
Raptor codes for this purpose, and shows by example that the corresponding effective code rate R§m, and there is
gaps to capacity need not be too large, at least provided theorresponding SNR (and channel gain) threshold. Thus, for
rates are not too high. a rateless encoding consisting/af blocks, there is a sequence
From the perspective of the broader body of related wod€é M associated SNR thresholds.
described above, the present paper represents somewhat @inally, as in the introduction, we refer to the code out of
a departure in approach to the design of rateless codes @jiich our rateless construction is built as thase codeand
hybrid ARQ systems. However, with this departure com@e associated rate of this code as simply lhse code rate
additional complementary insights, as we will develop. At points in our analysis we assume that a good base code is
used in the code design, i.e., that the base code is capacity-
1. CHANNEL AND SYSTEM MODEL achieving for the AWGN channel, and thus has the associated
The codes we construct are designed for a complex AWGi¥operties of such codes. This allows us to distinguishel®ss
channel due to the code architecture from those due to the choice of
Ym = B%m +2Zm, m=1,2,..., (1) base code.

wheref is a channel gaiﬁ,xm is a vector ofN input symbols,

ym IS the vector of channel output symbols, anglis a noise  2an equivalent model would be a broadcast channel in whichnglei
encoding of a common message is being sent to a multiplidiseceivers,
IMore general models fof will be discussed later in the paper. each experiencing a different SNR.



IV. MOTIVATING EXAMPLE convenience, we scale the codebooks to have unit power, so
To develop initial insights, we construct a simple lowthe® power constraint instead enters through the consiraint

complexity perfect rateless code that employs two layers of lg11]? + |gr2]? = P (11)
coding to support a total of two redundancy blocks. 9 2 P7 12
We begin by noting that for the case of a rateless code with 92117 + lg22|” = P. (12)
two redundancy blocks the channel gaith may be classified Finally, the successive decoding constraint in our system
into three intervals based on the number of blocks needed faeans that the layers are decoded one at a time to keep
decoding. Leta; and a, denote the two associated chann&lomplexity low (on order of the base code complexity).
gain thresholds. Whef3| > o, decoding requires only one Specifically, the decoder first recoves while treatingc,
block. Whena; > |3| > as decoding requires two blocks. as additive Gaussian noise, then recowgrsisingc, as side
Whenas > || decoding is not possible. The interesting casesformation.
occur when the gain is as small as possible to permit decodingwe now show that perfect rateless codes are possible within
At these threshold values, for one-block decoding the decodhese constraints by constructing a maix= [g,,,;] So that

sees (aside from an unimportant phase shift) the resulting code satisfieE] (8). Finding an admissiBlds

y1 = onxs + 21, @) f]len;?jly a matter of some algebra: in the one-block case we
while for two-block decoding the decoder sees

Ry = I, (cisyi|e) (13)
Y1 =axi+ 21, 3) Ry = I, (2 31), (14)
= QX9 + Zo. 4
2= o @) and in the two-block case we need
In general, given any particular choice of the ceiling rate

R for the code, we would like the resulting SNR thresholds Ry = Ia, (1551, 2l c2) (15)

to be a low as possible. To determine lower bounds on these Ry = 1o, (c2; y1, y2)- (16)

thresholds, let . .
’ The subscriptsy; and a; are a reminder that these mutual

information expressions depend on the channel gain, and the
and note that the capacity of the one-block channel is scalar variables denote individual components from thatinp
and output vectors.

SNR,, = Pa?, /o2, )

I =log(1 + SNRy), ©6) While evaluating [(TB)E(5) is straightforward, calcuhati
while for the two-block channel the capacity is the more complicated_(16), which corresponds to decoding
co in the two-block case, can be circumvented by a little

I = 2log(1 + SNR,) () additional insight. In particular, while; causes the effec-

bits per channel use. A “channel use” in the second cald¢e noise in the two blocks to be correlated, observe that
consists of a pair of transmitted symbols, one from eachkblo@® Ccapacity-achieving code requires and x; to be i.i.d.

In turn, since we deliver the same message to the receifgussian. Az; andc, are Gaussian, independent, and equal
for both the one- and two-block cases, the smallest valuesibfPower by assumption, this occurs only if the rows @f

a1 andas we can hope to achieve occur when are orthogonal. Moreover, the power constré?mansu_res t_hat
these orthogonal rows have the same norm, which implies that
Iy =1, =R. (8) G is a scaled unitary matrix.

The unitary constraint has an immediate important conse-

Thus, we say that the codeperfectif it is decodable at these :
guence: the per-layer ratég, and R, must be equal, i.e.,

limits.
We next impose that the construction biageredcode, and Ri =Ry, =R/2. (17)

that the layers bsuccessively decodable _ _
Layering means that we require the transmitted blocks dis occurs because the two-block case decomposes into two

be linear combinations of two base codewordse €, and parallel orthogonal channels of equal SNR. We see in the

cy € G next section that a comparable result holds for any number
of layers.
X1 = 9111+ 9122, ©) From the definitions of SNRand I; [cf. (B) and [6)], and
X2 = §21€C1 + g22Ca. (10) the equalityl; = R (8), we find that
Base codebool¢; has rateR, and base codebook, has Pal/o? =2F — 1. (18)

rate R,, where R; + R, = R, so that total rate of the .

two codebooks equals the ceiling rate. We assume for tA¥SO: from (I3) and[(Il7), we find that

example that both codebooks are capacity-achieving, g0 tha lg11]202 /o = 2R/2 1, (19)
the codeword components are i.i.d. Gaussian. Furtherrfare,

Combining [I8) and[{19) yields
3In practice, the codebook®; and@> should not be identical, though they R/2
can for example be derived from a common base codebook véanéding. 2 P2 -1 o i
This point is discussed further in Section VIIl. lgnn|” = oR _1 ~ 9R/2411°

(20)



The constraint tha@& be a scaled unitary matrix, together with g21€1
the power constrainP, implies g11€i ga1€1
C
912> = P — |gu|? 1) 5 9225 g32€2
921> = P — [gn1|” (22) & g12€2
|g22|* = |gu1[*, (23) l 923C3
g13C3 933C3
which completely determines the squared modulus of the
entries ofG. G14€4 g24€4 §34C4
Now, the mutual information expressions J(18)3(16) are
unaffected by applying a common complex phase shift to any time —s

row or column ofG, so without loss of generality we take the o

first row and first column ofG to be real and positive. For Fi9: 1. Arateless code construction with 4 layers and 3 Idatkedundancy.
. . Each block is a weighted linear combination of th&/-€lement) base

G to be a scaled unitary matrixpo must then be real and codewordsc, co, . . ., c1, whereg,,;, the (m, 1)th element ofG, denotes

negative. We have thus shown that, if a solution[id (I3)}-(18} weight for layer of block m. In this illustration, the thickness of a layer
exists. it must have the form is a graphical depiction of the magnitude of its associat&id ¢power).

gi1  gi2 P 1 2R/
921 g22 28/2 41 (2 -1 redundancy block from thé codeword§ In the sequel we

Conversely, it is straightforward to verify thdi (13)=(18)e US€gm: t0 denote them, l)th entry of G and G, to denote

satisfied with this selection. ThuE{24) characterizes #w (the upper-leftn x | submatrix ofGH

sentially) unique solutiorG[4 An example of this layered rateless code structure is de-
In summary, we have constructed a 2-layer, 2-block perfedigted in Figl1. Each redundancy block contains a repatitio

rateless code from linear combinations of codewords drawhthe codewords used in the earlier blocks, but with a dsffier

from equal-rate codebooks. Moreover, decoding can procegmplex scaling factor. The code structure may therefore be

one layer at a time with no loss in performance, providegewed as a hybrid of layering and repetition. Note thateabs

the decoder is cognizant of the correlated noise caused @gumptions on the decoder, the order of the layers is not

undecoded layers. In the sequel we consider the geneiatizatmportant.

of our construction to an arbitrary number of layers and In addition to the layered code structure, there is addition

redundancy blocks. decoding structure, namely that the layered code be succes-
sively decodable. Specifically, to recover the message,nate fi
decodec,,, treatingG|[cT ---cf_,]T as (colored) noise, then
V. RATELESSCODES WITHLAYERED ENCODING AND Ly 9Gicy L—1 | '
SUCCESSIVEDECODING decodec;, 1, treatingGlcl ---c} _,]T as noise, and so on.
Thus, our aim is to selecG so that capacity is achieved

The rateless code construction we pursue is as follo
[26]. First, we choose the range (maximum numbBér of
redundancy blocks), the ceiling rafé, the number of layers
L, and finally the associated codebodks ..., C,. We will
see presently that the base codebooks must have equal ra@ecoding each layer

L when constructing perfect rateless codes with= L, ' "

E/ . icting p . Both the layered repetition structuré_{25) and the suc-
and in any case using equal rates has the advantage of ajlowin . ’ L .
cessive decoding constraint impact the degree to which we

the codebooks for each layer to be derived from a single ba}:saen approach a perfect code. Accordingly, we examine the

Ot any numbem = 1,..., M of redundancy blocks subject
to the successive decoding constraint. Minimum mean-gquar
error (MMSE) combining of the available redundancy blocks
conveniently exploits the repetition structure in the cadeen

code. :
Given codewords; € @, I = 1,..., L, the redundancy consequer.lces of each |_n trn. .
blocksxy,. .., x) take the form We_ _begm by examining the implications of the _Iayered
repetition structure[(25). When the number of layérss at
X1 c1 least as large as the number of redundancy blagkssuch
=G| : |, (25) layering does not limit code performance. But wherc M,

it does. In particular, whenever the numberof redundancy

blocks required by the realized channel exceédghere is

where G is an M x L matrix of complex gains and wherenecessarily a gap between the code performance and capacity

x,, for eachm andc, for eachl are row vectors of length To see this, observe thdf {25) withl (1), restricted to the firs

N. The power constraint enters by limiting the rows @f 1, blocks, defines a lineak-input m-output AWGN channel,

to have squared norn? and by normalizing the codebooks

to have unit POWET. WIth_thIS notatlc_)n, the elements of thesThelth column ofG also has a useful interpretation. In particular, one can

mth row of G are the weights used in constructing theh interpret the construction as equivalent to a “virtual” eativision multiple-

access (CDMA) system witlh users, each corresponding to one layer of the

4Interestingly, the symmetry if (24) implies that the comstion remains rateless code. With this interpretation, the signatureegsing) sequence for

perfect even if the two redundancy blocks are received irpped order. This thelth virtual user is théth column ofG.
is not true of our other constructions. 6Where necessary, we adopt the convention @&at o = 0.



TABLE |

the capacity of which is at most LOSSESa,, /ay, IN DB DUE TO LAYERED STRUCTURE IMPOSED ON A
82P RATELESS CODE OF CEILING RATER = 5 B/S/HZ, AS A FUNCTION OF THE
, mlog (1 + T) for m < L, NUMBER OF LAYERS L AND REDUNDANCY BLOCKS m.
I = 2 (26)
Llog (1 + %@—213) for m > L. Redundancy blocksn

2 3 4 5 6 7 8 9 10
522 677 750 792 820 8.40 854 865 874
0.00 155 228 270 298 3.17 332 343 352
0.00 000 073 116 143 163 177 188 197
0.00 0.00 0.00 042 070 090 104 115 124
0.00 0.00 0.00 0.00 0.28 0.47 062 0.73 0.82
5 0.00 0.00 0.00 0.00 0.00 0.20 0.34 045 0.54
0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.26 0.35
0.00 0.00 0.00 0.00 0.00 000 000 0.11 0.20
0.00 0.00 0.00 0.00 0.00 000 0.00 0.00 0.09

Only for m < L does this match the capacity of a gener
m-block AWGN channel, viz.,

dl

L

L

2p L

I, = mlog (1—!— |ﬂ|2 > 27 L
o L

L

L

Ultimately, for m > L the problem is that ar.-fold linear
combination cannot fill all degrees of freedom afforded by the
m-block channel.

An additional penalty occurs when we combine the layered
repetition structure with the requirement that the codeate-r
less. Specifically, fod! > L, there is no choice of gain matrix
G that permits[(26) to be met with equalisymultaneouslyor
allm =1,...,M. A necessary and sufficient condition for As Table [
equality is that the rows o6, ; be orthogonal forn < L
and the columns ofG,, ; be orthogonal form > L. This
follows because reaching (26) fer < L requires that the
linear combination ofl. codebooks create an i.i.d. Gaussia
sequence. In contrast, reachingl(26) for> L requires that

OO0 Uk W

blocks, a 3-layer code has a loss of less than 2 d& at 10,
while a 5-layer code has a loss of less than 0.82 dB at 10.

reflects—and as can be readily verified
analytically—for a fixed number of layers and a fixed base
code rateR/L, the performance losa/,/«., attributable to
the imposition of layered encoding grows monotonicallyhwit
the number of blocksn, approaching the limit

the linear combination inject the codebooks into orthogonal a2 oR/L _q

; : X =, (30)
subspaces, so that a fractidrym of the available degrees o2, (R/L)In2
of freedom are occupied by i.i.d. Gaussians (the rest bei

Jilﬂus, in applications where the number of incremental redun

| dancy blocks is very large, it's advantageous to keep the bas
code rate small. For example, with a base code rate of 1/2

hbit per complex symbol (implemented, for example, using a

truncated to their first, — 1 dimensions. Thug (26) determinesr""te'l/‘_1 bi”?‘fy code) the loss due to I:_;\yering is at most 0.78
only a lower bound on the loss due to the layering structugg' while with a base code rate of 1 bit per complex symbol

(28). Fortunately, the additional loss encountered in fmac the loss is at most 1.6 dB.

turns out to be quite small, as we demonstrate numerically agVe now determine the additional impact the successive

part of the next section decoding requirement has on our ability to approach capacit
When M = L, the orthogonality requirement forcEbto be and ‘more generally what constraints it .imposes_(én We

a scaled unitary matrix. Upon receiving the final redundan ntinue to incorporate the power con;tramt by taking #te-r

block m — M, the problem decomposes intb parallel /L codebooksCy, ..., €y, to have unit power and the rows

channels with equal SNR, which in turn implies that the raféf G to have squared norm. Singe our aim_is to employ
of each layer must equat/L. codebooks designed for (non-fading) Gaussian channels, we

A lower bound on loss incurred by the use of insufficientl%ake the further assumption that the codebooks have cdnstan

empty).

Unfortunately, the columns dfx,,, ;, cannot be orthogona
simultaneously for allm > L; orthogonalm-dimensional
vectors (with nonzero entries) cannot remain orthogonarw

many layers is readily obtained by comparifig](26) dnd (2 ower, i.e.,2that the]}/ Satilff?' the per-s;(;m_bol epc(ejr.gy CauTstir
Given a choice of ceiling rateR for the rateless code, Uclv”(w)“]] < 1h or all layers{ anktlme Indicesn :b o
(28) implies that for rateless codes constructed usingatingt <> 2. Where the expectation is taken over equiprobable

L - NR/L iti i
combinations of.. base codes, the smallest channel gain messfaﬁes;vfe {LH. 277 ) Addr:tlonr?l constralunt]:s o ,
for which it's possible to decode with, blocks is now follow from the requirement that the mutual information

accumulated through any block at each layer be large

s ) (@F/m—1) "—Pz form < L, )8 enough to permit successive decoding.
m (2R/F — 1) Aa_; for m > L. (28) Concretely, suppose we have received blocks ., m. Let
_ o _ _ the optimal threshold channel gain,, be defined as i (29).
By comparison,[(27) implies that without the layering consuppose further that layets-1, . .., L have been successfully
straint the corresponding channel gain thresholgsare decoded, and define
2
a2 = (2R/m - 1) . (29) Vi ¢ z)
_ P =BG | P+ | (31)
The resulting performance loss!,/a,, caused by the v o 2

layered structure as calculated from1(28) ahd (29) is shown
in dB in Table] for a target ceiling rate dt = 5 bits/symbol. as the received vectors without the contribution from layer
For example, if an application requirdd = 10 redundancy [ +1,..., L.



Then, following standard arguments, with independenthere
equiprobable messages for each layer, the probability ef de -5
coding error for layersl,...,I can made vanishingly small 01 = arccos 9y/22’ 0> = 21 — arctan 3v/7,
with increasing block length only if the mutual information O — _ N 00— N
between input and output is at least as large as the combined 73 = —arctanviv, 4=m — arctan V7/3.
ratelR/L of the code<, ..., ;. That is, wherng equals the For M > 3 the a|gebra becomes daunting’ though we
optimal threshold gainv,,,, successive decoding requires  conjecture that exact solutions and hence perfect ratetetes
. exist for all L = M, for at least some nontrivial values &f]
IR/L < (1/N)I(C1,. .- €Y1, ¥m | €41) (32) For L < M perfect constructions cannot exist. As devel-
= (1/N)I(c1,...,Cl5V1,. .., Vi) (33) oped earlier in this section, even if we replace the optimum
= (1/N)(H(v1,...,vm) — H(v1,...,vmlc1,...,¢)) threshold channel gains,, defined via[(Z2B) with suboptimal
(34) 9ainsa;, of (28) determ]i)r;:e(; by the layering boudd((26), it is
still not possible to satis 6). However, one can comaelo
= 10gdet(021+a3nGm=lGjml) — log det(o™T) (35) While the associated analysis is nontrivial, such behaigor
= log det(I + (OL%I/UQ)Gm_’lG;rnJ), (36) easily demonstrated numerically, which we show as part of
the next section.

wherel is an appropriately sizedr{ x m) identity matrix.
The inequality [3b) relies on the assumption that the code- VI

books have constant power, and it holds with equality if the ) ) ] ) )
components OGm,l[C:f, o ’c’il"]T are jointly Gaussian, which In this section, we consider numerical constructions both

by Cramer’s theorem requires the components;of . ., ¢c; to  [0F the caseL = M and for the casd. < M. Specifically,

be jointly Gaussian. we have experimented with numerical optimization methods
Our ability to chooseG to either exactly or approximatelytO satisfy [3b) for up = 10 redur_ldancy .bIOCkS’ using the

satisfy [36) for alll — 1,...,L and eachm — 1,.... M threshold channel gains,,, defined vial(2B) in place of those

determines the degree to which we can approach capacitf‘ﬁﬁneg Viﬁ[(zp) a; appfr(l)priate when the number of blddks
is straightforward to see that there is no slack in the plmbleeXCee S the number of layels
(38) can be satisfied simultaneously for laéindm only if the For the casel, = M, for each of M = 2,3,...,10, we

inequalities are all met with equality. Beyond this obséora found constructions withiz/L = 2 bits/symbol that come

however, the conditions under whidfi.{36) may be satisfied a#hin 0.1% of satisfying[(36) subject td_(9), and often the
not obvious. solutions come within 0.01%. This provides powerful evicken

Characterizing the set of solutions f6r whenL — M — 2 gzlticp:):;fect rateless codes exist for a wide range of pammet
was done in Section IV (se€(24)). Characterizing the set ) .
solutions when = M = 3 requires more work. It is shown For the casel, < M, despite the fact that there do not

. : L : exist perfect codes, in most cases of interest one can come
in Appendix[A that, when it exists, a solutioc® must have o .
bp 8 remarkably close to satisfying (36) subject fal(28). Evitlen

. NUMERICAL EXAMPLES

the form . : " . AR
mutual information for Gaussian channels is quite insemsit
to modest deviations of the noise covariance away from a
G=vz-1- scaled identity matrix.
Vo +1 Vi (z +1) Vat(z+1) As an example, Tablelll shows the rate shortfall in meeting
B+1) Vb1 %2\ /z(xr +1)| (37) the mutual information constraints {36) for dn= 3 layer
V23 +1) &%/ x(x3+1) ef4/a3+1 code with M = 10 redundancy blocks, and a target ceiling
rate R = 5. The associated complex gain matrix is
_ 9R/6 J0i 5 _
wherez = 2 and wheree’®i, i = 1,...,4 are complex L4747 2.6277 16819

phasors. The desired phasors—or a proof of nonexistence—
may be determined from the requirement tikatbe a scaled
unitary matrix. Using this observation, it is shown in Ap-
pendiXA that a solutiox exists and is unique (up to complex
conjugate) for allR < 3(log(7 + 3v/5) — 1) ~ 8.33 bits per G =
complex symbol, but no choice of phasors results in a unitary
G for larger values ofR.

For example, usind (37) witlR = 6 bits/symbol we find
that:

3.5075 3.7794 720510 91009 ¢ 19486
4.0648 3.1298 ¢70-9531 9 1637 £12-5732
3.2146 3.1322¢73-0765 39949 0-9132
3.2146 3.3328 ¢ 7710547 3 0918 ¢ 714248
3.2146 3.1049 909409 3 3906 ¢2-8982
3.2146 3.3248 ¢91:2506 3 1004 ¢—40-2027
3.2146 3.0980 ¢ 714196 3.397() 719403
3.2146 3.2880 ¢ 729449 31304 ¢—J1.9243
| 3.2146 3.1795¢70-7839  3.2492 ¢0-3413

P=63, ar=1, ax=+/1/9, az=+1/21 The worst case loss is less than 1.5%; this example is typical
in its efficiency.

V3 V12 V48 _ _ _
G— \/ﬂ \/ﬁ i1 \/6 65 “In recent calculations following the above approach, Ayittdi at Tel
- € & Aviv University has determined that exact solutions existie M = L = 4

V36  /18e9%  /Q¢ifa case for rates in the range < 10.549757.



TABLE Il .
PERCENT SHORTFALL IN RATE FOR A NUMERICALLY¥OPTIMIZED A. Encoding

RATELESS CODE W'TH]Vé;ElgFB}L%OEKE)S'B/LSZE’ LAYERS, AND A CEILING As discussed above, in our approach to perfect constrigction
B ' in Section[W, we made each redundancy block a linear
. , , Red:ndangy blocé(m , . . 10 combination of the base codewords, where the weights are
I=1 0.00 000 0.00 000 0.00 000 0.00 0.00 0.00 O. _the_ correspondn_wg row of the combining mat'@’ as [2b)
l=92 000 028 123 146 139 044 059 048 016 o023indicates. Each individual symbol of a particular redurgyan
=3 000 029 1.23 1.48 1.40 043 054 051 0.15 0.23block is, therefore, a linear combination of the correspogd
symbols in the respective base codewords, with the comipinin
matrix being the same for all such symbols.

h Ll f the desianed cod lati ; Since for the codes of this section we allow the combining
The total loss of the designed code relative to a perfegl iy 1o vary from symbol to symbol in the construction of

ratglelss co?je 1S, ofdgourse, the guml of the successwehdg)l:o@ach redundancy block, we augment our notation. In paaticul
and layered encoding constraint losses. Hence, the OS§€Mgc;(n) andx,, (n) to denote thexth elements of codeword

in Tables[l andll are cumulative. As a practical _matteEl and redundancy block,,, respectively, we have [cf{25)]
however, whenl, < M, the layered encoding constraint loss

dwarfs that due to the successive decoding constraint: the [ xi(n) ci(n)
overall performance loss arises almost entirely from thae& : = G(n) :
inability to occupy all available degrees of freedom in the « '(n) CL'(n)

channel. Thus, this overall loss can be estimated quitelglos

by comparing [[2l7) and_(26). Indeed this is reflected in odte value ofM plays no role in our development and may
example, where the loss of Taldle | dominates over that be taken arbitrarily large. Moreover, as before, the power

., n=12...,N. (38)

Table[l. constraint enters by limiting the rows d&(n) to have a
squared normP and by normalizing the codebooks to have
unit power.

VIl. EXISTENCE OFNEAR-PERFECTRATELESS CODES It suffices to restrict our attention G (n) of the form

While the closed-form construction perfectrateless codes G(n) = P © D(n), (39)

subject to layered encoding and successive decoding becofereP is an M x L (deterministic) power allocation matrix

more challenging with increasing code range the construc- ith entries,/Fry; that do not vary within a block,
tion of codes that are at least nearly perfect is compatgtive

straightforward. In the preceding section, we demonglirate [ VP11 .. PiL

this numerically. In this section, we prove this analytigaln P= : . : , (40)

particular, we construct rateless codes that are arbjtreldse i i

to perfect in an appropriate sense, provided enough layers a LVPML e /PMLL

used. We term these near-perfect rateless codes. The caddD(n) is a (random) phase-only “dither” matrix of the form

construction we present is applicable to arbitrarily larfge rd o

and also allows for simpler decoding than that required & th 11(n) 1)

preceding development. D(n) = : : ; (41)
The near-perfect codes we develop in this section [27] are |dai(n)  --- dan(n)

closely related to those in Sectién V. However, there afe
a few differences. We retain the layered construction, b

instead of using a single complex We_ight for _the codevyor all other random variables, including noises, messaayad,
at each layer (and block), we use a single weight “_“agn't“ Gdebooks. As we shall see below, the role of the dither is
for each codeword and vary the phase of the weight fro decorrelate pairs of random variables, hence it suffioes f

symbol to symbol within the codeword in each layer (ang .\ 16 valuest1 and—1 with equal probabilit
block). Moreover, in our analysis, the phases are choselﬁ(n) valuest w quatp -

randomly, corresponding to evaluating an ensemble of codes

The realizations of these random phases are known to dhdDecoding

exploited by the associated decoders. As with the usuabrand  To obtain a near-perfect rateless code, it is sufficient to

coding development, we establish the existence of goodsco@enploy a successive cancellation decoder with simple malxim

in the ensemble by showing that the average performancedsio combining (MRC) of the redundancy blocks. While, in

good. principle, an MMSE-based successive cancellation decoder
These modifications, and in particular the additional degreenables higher performance, as we will see, an MRC-based

of freedom in the code design, simplify the analysis—atne is sufficient for our purposes, and simplifies the anslysi

the expense of some slightly more cumbersome notatidndeed, although the encoding we choose creates a per-

Additionally, because of these differences, the particgiin layer channel that is time-varying, the MRC-based suceessi

matrices in this section cannot be easily compared withehosancellation decoder effectively transforms the chanmekb

of Section ¥, but we do not require such comparisons. into a time-invariant one, for which any of the traditional

th © denoting elementwise multiplication. In our analysis,
e d;;(n) are all i.i.d. in4, j, andn, and are independent



low-complexity capacity-approaching codes for the AWGNayers/ + 1 and higher have been decoded and removed, we
channel are suitable as a base code in the d@sign. decode fronw,, ;. Writing

The decoder operation is as follows, assuming the SNR is
such that decoding is possible fram redundancy blocks. To Vit = B(dmi © Pm,i)Ct + Vi1, (45)
decode thd.th (top) layer, the dithering is first removed fronthe operation of removing the dither can be expressed as
the received waveform by multiplying by the conjugate dithe
sequence for that layer. Then, the blocks are combined
into a single block via the appropriate MRC for that layemwhere
The message in thigth layer is then decoded, treating the Vi1 =45 OV 1. 47)
undecoded layers as noise, and its contribution subtracted . .
from the received waveform. Thid — 1)st layer is now the The MRC _decoder treats the dither in _the same manner
top layer, and the process is repeated, until all layers h noise, 1.e., as a _random process W'th. known stat!stlcs
been decoded. Note that the use of MRC in decoding it L_mknown reaI|zat|on..I.3ecause the entrles. of the dither
equivalent to treating the undecoded layers as white (lratﬁgatr'x are chosen to be, ""' random phases independent of
than structured) noise, which is the natural approach when {he messages, the entries bf,, and la - Cl‘l.] are
dither sequence structure in those undecoded (Iower)sjayerj(zmtly and individually uncorrelated, and the effectlvem?
ignored in decoding the current layer of interest. Vimu-1 S€€n by the MRC decoder has diagonal covariance

We now introduce notation that allows the operation of thgv:n,l,1 = E[Vlm,l—lvlll,z—l]_- _ )
decoder to be expressed more precisely. We then determinahe €ffective SNR at which thikth layer is decoded from
the effective SNR seen by the decoder at each layer of edgrPlocks via MRC is thus
redundancy block. Ui

SinceG(n) is drawn i.i.d., the overall channel is i.i.d., and SNRurc = Z SNRaw1(8), (48)

d OVt = BPmiCl+ Vo (46)

thus we may express the channel model in terms of an arbitrarK m'=1
individual element in the block. Specifically, our receivetnere
waveform can be expressed as [E]. (1) dnd (25)] 1812 1

SNRy1(3)

= . 49
1B2(Pmra + -+ Pmri—1) + 02 (49)

) Note that we have made explicit the dependency of these per-
layer per-block SNRs off.

Y1 1 Z1
=BG P e ol A (42

Ym CcL ZM

y

whereG = P®D, with G denoting the arbitrary element in theC. Efficiency
sequencés(n), and wherey,, is the corresponding received The use of random dither at the encoder and MRC at the
symbol from redundancy block: (and similarly forc;, z,,, decoder both cause some loss in performance relative to the
D). perfect rateless codes presented earlier. In this sectéoshaw

If layersi+ 1,1+ 2,..., L have been successively decodethat these losses can be made small.
from m redundancy blocks, and their effects subtracted from When a coding scheme is not perfectgtficiencyquantifies
the received waveform, the residual waveform is denoted byow close the scheme is to perfect. There are ultimatelyrakve

ways one could measure efficiency that are potentially isefu

a 1 for engineering design. Among these, we choose the follgwin
Vet =BGy | 1|+ 1], (43) efficiency notion:
a Zm 1) We find the ideal thresholdsy,, } for a perfect code of
) rate R.
where we continue to 1€6,,,, denote them x I upper-left 5y \we determine the highest rai such that an imperfect
submatrix ofG, and likewise foD,, ; andP,, ;. As additional code designed at rat& is decodable withn redun-
notation, we letg,, ; denote them-vector formed from the dancy blocks when the channel gain ds,, for all
upperm rows of thelth column of G, whence m=1.2. .
3) We measure efficiency by the ratio R’ /R, which is
Gm,l - [gm,l gm,Q e gm,l] 3 (44) ) ¥ by /

always less than unity.
and likewise ford,,, ; andp,, ;. With this notion of efficiency, we further define a coding

With such notation, the decoding can be expressed $gheme as near-perfect if the efficiency so-defined appesach
follows. Starting withv,, ; = y, decoding proceeds. After unity when sufficiently many layers are employed.
The efficiency of our scheme ultimately depends on the

8More generally, the MRC-based decoder is particularlyaetive for Choice of our power allocation matrix_(40). We now show
practical implementation. Indeed, as each redundanckaintves a sufficient  the main result of this section: provided there exists a powe
statistic for decoding can be acgumulated without the nee[énaln‘earller allocation matrix such that for eadrandm
blocks in buffers. The computational cost of decoding thusng linearly

with block length while the memory requirements do not gravala This is R m
much less complex than the MMSE decoder discussed in théogewent of - = Z log(1 4+ SNR,, i (aum)), (50)
the codes of Section]V. L m—1



with SNR,,;(-) as defined in[{49), a near-perfect rateles
coding scheme results. We prove the existence of suct
power allocation—and develop an interpretation [of] (50)—i
Appendix(B, and thus focus on our main result in the sequ:

We establish our main result by finding a lower bound c
the average mutual information between the input and outf
of the channel. Upon receivingy blocks with channel gain
o, and assuming layefs-1, . .., L are successfully decoded,
let I}, , be the mutual information between the input to th
lth layer and the channel output. Then

efficiency bound (fraction of capacity)

Il/,m = I(Cl;vm.,l | dm,l) (51) 0.84}
= I(Cl; AmPm,1C + V/m7l_1 | de), (52) 0.82}
> I(Cl; AmPm,1C + v:”’hl)’ (53) o
> I(c; omPm,ic + vzﬂ), (54) base code rate (b/s/Hz)
= log (1 + SNRurc) (55)

Fig. 2. Lower bound on efficiency of the near-perfect ratelesde. The top
where m) follows from @G)E@?) [:(53) follows from theand bottom curves are the middle and right-hand bounds_9f (ESpectively.
independence of;, andd,, ;, and [G#) obtains by replacing
v/ ,_, with a Gaussian random vectef, ,_, of covariance

m,l— ; ,
KVIMCH. Lastly, to obtain[(55) we have usdd [48) for the post- VIIl. D ESIGN AND IMPLEMENTATION |SSUES
MRC SNR.

Now, if the assumptior(50) is satisfied, then the right—handIn this section, we comment on some [ssues that arise
. . in the development and implementation of our rateless code
side of [GH) is further bounded for ath by

constructions; additional implementation issues are esidd

, in [28].
L1 2 log <1+lnzf)’ (56) First, one consequence of our development of perfect
rateless codes foll = L is that all layers must have

where we have applied the inequality(l + u) < u he same rateR/L. This does not seem to be a serious

(valid for u > 0) to (30) to conclude thalln2)R/L < jimitation, as it allows a single base codebook to serve as th

2 =1 SNRyw i(as ). Note t/hat the lower bound_(56) Mayiempiate for all layers, which in turn generally decreases t

be quite loose; for exampld;, ; = /L whenm = 1. implementation complexity of the encoder and decoder. The

Thus, if we design each layer of the code for a base Cogﬁdebooksﬁ’l, ...,@;, used for thel layers should not be

rate of " identical, however, for otherwise a naive successive dercod
— =log (1 +In 2—) , (57) might inadvertently swap messages from two layers or face
L other difficulties that increase the probability of decapiémror.

(58) ensures decodability aften blocks are received whenA simple cure to this problem is to apply pseudorandom

the channel gain is,,, form =1,2,.... phase scrambling to a single base codeb@oto generate
Finally, rewriting [5T) as the different codebooks needed for each layer. Pseudomando
RYIL interleaving would have a similar effect.
R_2 —1 (58) Second, it should be emphasized that a layered code de-
L n2 7 signed with the successive decoding constrdint (36) can be
the efficiencyn of the conservatively-designed layered repetidecoded in a variety of ways. Because the undecoded layers
tion code is bounded by act as colored noise, an optimal decoder should take this

into account, for example by using a MMSE combiner on
B (m?)ﬂ >1- m_2R_”, (59) the received blockgy,,} as mentioned in SectionlV. The
R 2R/ — 1 2 L MMSE combining weights change as each layer is stripped
which approaches unity as — oo as claimed. off. Alternatively, some or all of the layers could be decdde
In Fig.[2, the efficiency bounds(b9) are plotted as a functigaintly; this might make sense when the decoder for the base
of the base code ratB”/L. As a practical matter, our boundcodebook decoder is already iterative, and could potdtial
implies, for instance, that to obtain 90% efficiency regsliee accelerate convergence compared to a decoder that treats th
base code of rate of roughly/3 bits per complex symbol. layers sequentially.
Note, too, that when the number of layers is sufficientlyéarg Third, a comparatively simple receiver is possible when all
that the SNR per layer is low, a binary code may be uséd blocks have been received from a perfect rateless code in
instead of a Gaussian codebook, which may be convenient anich A/ = L. In this special case the linear combinations
implementation. For example, a code with raté3 bits per applied to the layers are orthogonal, hence the optimal re-
complex symbol may be implemented using a rgté-LDPC ceiver can decode each layer independently, without seivees
code with binary antipodal signaling. decoding. This property is advantageous in a multicasting

n
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. . : . . TABLE Il
scenario because it allows the introduction of users with RATE 2/3 B/S/Hz 3GPP LTE B\SE CODE EFFICIENCIES

simplified receivers that function only at certain ratesthirs
case the lowest supported one.
Finally, we note that with an ideal rateless coelegryprefix
of the code is a capacity-achieving code. This correspands t
maximally dense set of SNR thresholds at which decoding can
occur. By contrast, our focus in the paper has been on rateles
codes that are capacity-achieving only for prefixes who3éwus, in computing the gain matri&, we prescale the target
lengths are an integer multiple of the base block length. Thate, replacingR with R/n.(¢). Note that as a resultG
associated sparseness of SNR thresholds can be undesirddpends on the target rate and the base code properties only.
in some applications, since when the realized SNR is betweerFor the particular base code used in the simulations, the
thresholds, there is no guarantee that capacity is achievefficiencies are as given in Tatdle]lll.
the only realized rate promised by the construction is thatin our simulation, we decode not only from integer numbers
corresponding to the next lower SNR threshold. of redundancy blocks, but also from noninteger numbers,
However, as will be apparent from the simulations describedrresponding to partial blocks. In general, MMSE combinin
in SectionIX, performance is generally much better thaa this applied on a symbol-by-symbol basis, in conjunction with
pessimistic assessment. In particular, partial blocks/ijeo our usual successive cancellation. In particular, when the
essentially all the necessary redundancy to allow an apipromumber of incremental redundancy blocks is noninteger,
ately generalized decoder to operate as close to capacitytt&n the MMSE combiner for the first (m — [m|) symbols
happens with full blocks. of the codeword in a given layel is constructed from
Nevertheless, when precise control over the performancetia submatrixG | +1,;, While the MMSE combiner for the
a dense set of SNR thresholds is required, other approact@aaining N(1 + |[m] — m) symbols of the codeword is
can be used. For example, when the target ceiling rate, is constructed from the submatric€, , ;.
we can use our rateless code construction to design a code dfollowing combining (and cancellation), turbo decoding is
ceiling ratex?, wherel < x < M, and have the decoderapplied to the layer of interest, where the initial log-likeod
collect at leasts blocks before attempting to decode. Withratios are calculated treating the symbols as corrupted by
this approach, the associated rate thresholdsRax/(x + Gaussian noise with variance determined by the effective
1),Rr/(k+2),...,Rx/M. Hence, by choosing larger valuessNR. This effective SNR is determined from the (reciprocal

Bit-Error Ratee
10=2  107% 10=* 10°°
Efficiency o | 88.9% 87.1% 85.7% 84.7%

of k, one can increase the density of SNR thresholds. of the unbiased) mean-square error resulting from MMSE
combining, taking into account the successive cancefiatio
IX. SIMULATIONS Thus, whenm is noninteger, the initial log-likelihood ratios

Implicit in our analysis is the use of perfect base codd8ke on one value for the symbols in the first part of the
and ideal (maximum likelihood) decoding. In this sectiorfdeword, and a different value in the second part.
we present simulations that further validate our ratelestec  1he overall efficiency; of the resulting rateless code, i.e.,
design with practical coding and decoding. the fraction of capacity at which it operates, is a functibthe

In our simulations, we use as our base code the turbo cdi¢mber of incremental redundancy blocks(or equivalently
specified in the 3GPP LTE wireless standdrd [21]] [22]. Thi§€ realized SNR in the channel). We calculatefor the
parallel-concatenated convolutional code constructechfa general case whers may be noninteger as follows. First,
pair of 8-state constituent encoders has a rate/6fbits per for a given value ofm, the roll-off of the bit-error rate
complex symbol. This code is used on conjunction with tHef the overall rateless code as a function of the SNR can
iterative turbo-decoding algorithm for which it was design be generated, where for each SNR value, the corresponding

The base code is used in both 3- and 4-layer rateld¥MSE combiner with successive cancellation is used. As
constructions, corresponding to ceiling ratesiof= 2 and above, whenm is noninteger two MMSE combiners are
R = 8/3 bls/Hz, respectively. Moreover, there are a totdnvolved. The resulting bit error rate is averaged over both
of 6144 information bits per layer, corresponding to a blodke NV symbols within the codeword at every layer and fhe
length of N = 9216 complex symbols. layers, so that error propagation effects are taken intowadc

Encoding proceeds as follows. Since the base code is N¥¢ then let SNRm, ¢) denote the SNR at which the target
ideal, it has a bit-error rate that rolls off with the opengti bit-error ratee is attained for this particular value at, from
SNR. Let SNR(e) denote the SNR at which the base cod@hich the efficiency of the rateless code is

achieves a bit-error rate ef Then, using a definition analo- R/m
gogs t that used in Sectién VII-C, the efficiency of the base n(m, €) = Tog(1+ SNRm, €)' (60)
code ig
(6) = R/L where we have used a notion of efficiency consistent with
e = 1og(1 + SNR(€))” earlier definitions.

The resulting efficiency plots are depicted in Fiy. 3. Selvera

90ne can equivalently measure the efficiency of the base cotirms of features are noteworthy. First, the efficienciesifoe= 1,2, . ..

its gap to capacity at a particular target bit-error rateweler, our chosen .
measure is more natural when relating the efficiency of thee lwmde to the redundancy blocks are quite close to those of the base code

rateless code constructed from it. shown in Tablé&Tll; typically they are at most 2-3% lower. §hi
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time-varying channel can be viewed as an instance of paralle
channels, and thus a solution can be developed from a solutio
to the problem of rateless coding for parallel channelgidhni
work in this direction is described in, e.gl, [29]-[31], ]33
though much remains to be understood about the performance
limits of various constructions. Another approach is based
on the observation that feedback about the past channel stat
can significantly simplify the problem of encoding for fugur
transmissions_ [34]. It is this approach we describe herenas a
illustration of potential. In particular, we show that thatural
generalization of our architecture is perfect (i.e., céyac
achieving), enabling the message to be recovered with the
minimum possible number of blocks for the realized channel.

For the time-varying channel we consider, the observations
take the form

Efficiency (%)

i 115 é 2.‘5 3
No. Blocks
(a) 3-layers, 3-blocks (rate rang2/3 to 2 b/s/Hz) Ym = BmXm +2Zm, m=12,..., (61)

where the{,,} denote a sequence of complex channel gains.
The 3,, continue to be known a priori at the receiver but not
at the transmitter.

The encoder transmits a messageby generating a se-
qguence of incremental redundancy blockgw), x2(w),
The receiver accumulates sufficiently many received blggks
yo, ...to recovemw. Immediately following the transmission of
block x,,, the encoder is notified gf,,. Thus, knowledge of
51, - -, Bm can be used in the construction of the redundancy
block x;,, 41 (w).

In this context, aperfect rateless code is then one in
which capacity is achieved for any number = 1,..., M
of redundancy blocks, i.e., whenever the (realized) chlanne
gains are such that

Efficiency (%)

i i i i
1 15 2 25 3

" P
No. Blocks R< Z log (1 + ;|ﬂm'|2> ) (62)

m/=1

(b) 4-layers, 4-blocks (rate rang®/9 to 8/3 b/s/Hz)

the message can be recovered with high probability.

Fig. 3. Practical efficiencies achieved using a ratelesstoaction in con- In this development, for values af such that the right side

junction with rate2/3 base code. The successively lower curves correspondf . L . .

to target bit-error rates af0=2, 10~3, 10~%, and10~?, respectively. of (62) is less tharR, it is convenient to defintarget channel
gainsa,,, 1 required for successful decoding once blaek-1
is obtained. In particulaky,,+1 is defined via

suggests, at least for codes with few layers, that lossesadue P m P

the raFeIe;s architecture itself, as vyeII as the use oftivera R = log <1 + —2043n+1) + Z log <1 + _2|ﬂm/|2> . (63)

decoding in the face of non-Gaussian noise from undecoded g m=1 g

layers, are negligible in practice, and that good base covdes whenevera,, > |G-

yield good rateless codes. Generalizing our construction for the time-invariant case

Second, the efficiencies do not vary significantly with thﬁ/e first choose the ranga/, the ceiling rateR, the num-
number of redundancy blocks. Moreover, even when partial ber of layersL, and finally the associated base codebooks

redunda_ncy blocks are used, the efficiency does not _deter )" ©,. We assume a priori that the base codebooks all
rate. This suggests that our rateless code constructiams fa

. . e equal ratd?/L.
operate over a much finer-grained set of rates than our deS|grAS with our time-invariant construction, the redundancy

prescribed. However, it should be emphasized that thissholgk)Cks %, xy; take the form [Z5). We emphasize that

only when at least one full redundancy block is used. Wh?ﬂe mth row of G, which constitute the weights used in

IrZZSidrlge/dundancy is used, Fig. 3 shows that efficiency fafls %fonstructing thenth redundancy block from the codewords,

will in general be a function of the (realized) channel gains
B1,- -, Bm—1. Specifically, themth row is designed for the
X. EXTENSIONS TOTIME-VARYING CHANNELS channel gain sequené@, ..., Bm_1, am}, i.€., we substitute
The framework of this paper can be extended to timéhe target gain,, for the (as yet unknown) channel gap,.
varying channels in a variety of ways. As one example, th@nally, in addition to the layered code structure, we amumi
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to impose the constraint that the layered code be succssij29], and the diagonal subblock layering approach desdribe
decodable. in [29].

Our aim is to selec6 so that the code is perfect as defined Beyond the single-input, single-output (SISO) channel,
earlier. From the layered repetition encoding structure, wnany multiterminal and multiuser extensions are also of
require as in the time-invariant development that the roisG o considerable interest. Examples of preliminary develapsie
be orthogonal, while from the successive decoding comstraflong these lines include the rateless space-time codéraons

we have the requirement [cf_(36)] that tions in [35], the rateless codes for multiple-access chbnn
IR 1 developed in [[36], and the approaches to rateless coding
T < logdet(I + _QBmeJG'jn_’lBjn) (64) for parallel channels examined in_[29]-[31]. Indeed, such
g research may lead to efficient rateless orthogonal frequenc
foralll=1,....,Landm =1,..., M, with division multiplexing (OFDM) systems and efficient rateles
B,, = diag(B1, . .-, Brn_1, o). (65) ;npuritl:égtpi)g:{s'multl output (MIMO) codes with wide-ranging

With this model, in Appendi’C we construct in closed Finally, extending the layered approach to rateless coding
form perfect rateless codes for the case\bf= 2 redundancy developed in this paper beyond the Gaussian channel is also
blocks andL = 3 layers for rates in the rangk < log(2 + @ potentially rich direction for further research. A notabl
V/5) & 2.08 bits per complex symbol. This construction cai¢xample would be the binary symmetric channel, where good
be viewed as the time-varying natural generalization of itha rateless solutions remain elusive. Preliminary work irs thi
Sectior{1V. Establishing the existence of perfect ratetestes direction is described ir_[32].
for larger values of\/ and/orL requires more effort. However,
following an approach analogous to that used in correspandi APPENDIXA
development for the time-invariant case in Secfionl VII, we PERFECT RATELESS SOLUTION FOHL. = M =3
shown in Appendlﬂ) that in the limit of a large number of Determining the set of solutions
layers L, asymptotically perfect codes for all valuesdf are

possible. gt g1z gi3
G = g21 g22 g23 (66)
X|. CONCLUDING REMARKS gs1 932 933

In this paper, motivated by hybrid ARQ requirements iﬁo (38) whenL = M :.3 as gfunction of the ceiling ratg
& matter of lengthy if routine algebra.

wireless and related applications, our focus has been on bedin by ob ing th | f
development of a lossless framework for transforming a code"Vé begin by observing that any row or any column@

good for the AWGN channel at a single SNR into one goo'a'ay be _multiplied by a common phasor without changing
simultaneously at multiple SNRs. There are a variety Gf. Without loss of generality we may therefore take the
worthwhile directions for further research irst row and first column ofG to be real and positive. Each

First, while beyond the scope of the present paper,gthus :jgpreser:ts atget of SO“;]t.'or??r?%?’ wherleDi landh
comparative evaluation of methods described herein velati 2 are diagonal matrices in which the diagonai entries have

to, for example, those described in Sectloh Il is likely tgmdulus 1. The solutions in the set are equivalent for most

reveal additional insight, and uncover opportunities fottier €N9!NEEMNNG purposes and we shall therefore not distihguis
progress them further.

Second, while we have developed some preliminary resugﬁlswe know thatG must be a scaled unitary matrix, scaled so

on the extension of our framework to time-varying channel ,at thg row an(_j column norms ageP. Thus, if we som_ehow
etermine the first two rows d&, there is always a choice for

clearly this is just a beginning. For example, whih > 2, the third Cits th . ¢ h o the firsbt
there is flexibility in the problem formulation, and thus in € third row. 1ts the unique vector ortnogonal to the Tis

how the available degrees of freedom are allocated. As anoth°"'s Wh'CT melets (;he p_?wer (;: onstralnlt "’T{}d Wh'crt] hasefltrhst
example, one could consider other time-variation modeish s component real and posilive. Lonversely, Its easy 1o sa

as one that would allows to vary deterministically so long any appropriately scaled unitary mati@& that satisfies[(36)

as the pattern of variation is known in advance. Then, for ong../" = 1 andm = 2 (and alli = 1,2, 3) necessarily satisfies

block the code would be designed for a gair®f 1], for two ) _for m=3. We may theref-orle without loss of g_enerahty
blocks the target gains would bes.1 as.,), for three blocks restrict our attention to determining the set of solutiamshie

the gains would béas , a2 as4], and so on. Still another first two rows of G; the third row comes “for free” from the

example would involve the development of solutions for H.meconstramt thalG. be a scaled unitary matr!x.
Assume, again without loss of generality, thet = 1 and

varying channels without requiring SNR feedback, eitheahwi "™ . : i .
or without a stochastic model faf. o? = 1. Via (38), the first row ofG (which controls the first

Other worthwhile directions include more fully developingredundancy block) must satisfy

rateless constructions for the AWGN channel that allow de- R/3 =log(1 + ¢%) (67)
coding to begin at any received block, and/or to exploit an 2 2

. i . ) 2R/3 = log(1 68
arbitrary subset of the subsequent blocks. Initial effortthis / og(1+ gél + 9;2) ) (68)
direction include the faster-than-Nyquist constructionf27], 3R/3 =log(1 + g11 + 912 + 9i3) (69)
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and must also satisfy the power constraint Substituting [(7P) into[(82) to eliminate the cosine term and
using [80) yields

P =gt + 9% + 915 (70)
) ' = as(gtilga)? + 91295 — gisl9as?
Thus P_oR_1_6_1 +9%19§1+9%2|922|2)
- -7 +a(gly + gts + 951 +g22/?) + 1. (83)
and Finally, substituting the expressions fgf,, g%,, 975, 931,
2 i i
9%1 R 12, (71) and s computed ab;)ve, using th2e pozver constraint
g%, = 2B/3(2R/3 _ 1) = 42(22 — 1), (72) 923" = P = [g22]" — 931, (84)
g2y = 223 R 1) = 2 (2% - 1), (73) solving for [g22|?, and simplifying, we arrive at
2 _ 5
where for convenience we have introduced the change of 922" = (2" + 1)(z — 1). (85)
variablesz = 27/6. The power constrainf(84) then immediately yields
The first column ofG (which controls the first layer of ) )
each redundancy block) is also straightforward. Vid (2%hwi |g23]” = z(z” = 1). (86)
m =2 andm = 3, we have The squared modulus of the entries of the last ronGof
) 1 - follow immediately from the norm constraint on the columns:
Ay = ———,
x3+% g =P—g5+gh =@ —x+1)(@* -1).  (87)
2 _
e (75) 952 = P = gy — g} = a(@® + 1)@~ 1) (88)
Using [386) forl = 1 andm = 2 yields and
933> = P — 935 — gis = (2 + 1) (@ —1). (89
R/3 =log(1 + a3(g7) + g31))- (76)

This completes the calculation of the squared modulus of the
Substituting the previously computed expressidns (71) asedtries ofG. In summary, we have shown th@t has the form
(74) for g2, and a3 into (Z8) and solving forg,; yields

G=vzr—-1-
2 _ 37,2
921 = @@ —1). (77) VIFT  Patl) o @rD
To solve for the second row d& we use [(36) withm = Br+1) Vb +1 %2\ /a(x+1)| (90)

I = 2 together with the requirement that the first and secondLv/#%(z% +1) % \/z(a3 +1)  e/%1Va3 +1
rows be orthogonal. It is useful at this stage to switch t@pol,,pare ., — 9R/6.
coordinates, i.e.g22 = |9?2|e'79] andgas = |gasle’. We must now establish the existence of suitahle . . , .
Orthogonality of the first and second rows means that 14 resolve this question it suffices to consider the conse-
(78) quences of the orthogonality constraibt](78) én and 6.
As remarked at the start of this section, the last rowzoand
Complex conjugation is not needed here because the first ra@nceds and ¢, come “for free” once we have the first two

is real. The three terms in the above expression may be vievie#'s of G.

as the legs of a triangle, so by the law of cosines Substituting the expressions fog,,,|> determined above
into (Z8) and canceling common terms yields

0= \/E+ej91\/x4—x3—|—x2—:c+1—|—6j92\/:173. (91)

The right-hand side is a sum of three phasors of predetetmine

0 = g11921 + g12|922]€’®* + g13|gas|e’®.

2g11921912[g22] cos 01 = gi5]gaa|* — 911931 — gialgoal®. (79)
We now use[(36) withn = [ = 2 to infer that

228/3 — 2 — det(I + a3Go2Gl ). (80) Magnitude, two of which can be freely adjusted in phase. In
’ geometric terms, the equation has a solution if we can aerang
To expand this expression, we compute the three complex phasors into a triangle, which is possible
9 9 _jo, and only if the longest side of the triangle is no longer than t
GGl = [0 + 912 911921; 912|922216 ", (81) sum of the lengths of the shorter sides. The resulting ttéang
’ (*) 921 + |g22] is unique (up to complex conjugation of all the phasors). Now
where (x) is the complex conjugate of the upper right entnjhe middle term of[(91) grows faster inthan the others, so
from which we find for large x we cannot possibly construct the desired triangle.
A necessary condition for a solution is thus
det(I—'—agGmG;?) - VI4+Va3 > Vot — a3+ a2 —x+1, (92)

4/ 2 2 2 2
-2 0 . . .
a2 (gnlgaal” + 92129221 291192;912|922| (;OS 1) where equality can be shown (after some manipulation) td hol
+ 3911 + 912 + 921 +19227) + 1. (82) 4t the largest root 0f? — z + 1, i.e., atz = (3 + v/5)/2, or
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equivalently R = 6log, z = 6log,(3 + v/5) — 6. It becomes where
evident by numerically plotting the quantities involvedtlthis L=Ic;6+--+¢cL+z] EILH),

necessary condition is also sufficient, i.e., a unique Eoiub I - - -
y q with C1L+1 = (&+1, G492, - - -, L), we see that the overall code-

5/ and no othere, Esablishing i fat aigebraically i 90K POWer constiain? can be met by apportoring power
unrewarding though straightforward exercise. O layers in any way desired, so long as+--- +pr = P.

. Since the undecoded layers are treated as noise, the maximum
A relatively compact formula ford; may be found by codebook rate for théth layer is then
applying the law of cosines té (P1):

I; =log(1 + SNR, 96
ol . R S ©3) l g( ) (96)
S(T — = .
' 2y/w(zt — a3 + 22 —x + 1) where )
Similar formulas may be derived fdk, 63, andé,. T 1BPPp1+ 1BPp2 + -+ |BPpi—1 + 02 (97)
is the effective SNR when decoding thé layer. Straightfor-
APPENDIXB ward algebra, which amounts to a special-case recalcolatio
POWER ALLOCATION of (@9), confirms thatl; + - - - + I, = log(1 + |32 P/c?) for

The power allocation satisfying the propefftyl(50) can be ngxlselect_lonl of_powerc;spl}f. lecti | d
tained as the solution to a different but closely relatedless te”?a“ve Y, mstez_ of selecting per- alyer povx:ers an
code optimization problem. Specifically, let us retain thech computing corresponding rates, one can select per-iayes ra

structuring and layering of the code of Section VII-A, bu’[jlnd compute the correspondmg POWETS. The rdte} for
instead of using repetition and dithering in the constarcti each level may be set in any way desired so long as _the
let us consider a code where the codebooks in a given la %‘ial rate112+ N '2+ I, does n_ot exceed the channel capacity
areindependenfrom block to block. While such a code is still og(1 + |_ﬁ| P/o"). The reqU|red_power$pl} may then be
successively decodable, it does not retain other charstiter found using[(96) and (97) recursively foe=1,..., L. There

that make decoding possible with low complexity. Howevel> 1O need to verify the power constraint: it follows from
the complexity characteristic is not of interest. What do ) th","t the powers computed in this way sumRoThus
matter to us is that the per-layer, per-block SNRs that tesljj 'emains only to check th?‘t th@gl} are all nonnegative to
from a particular power allocation will be identical to tleos ensure that the rate f"‘”‘?ca“on is a valid one.

of the code of SectioF VIEA for the same power allocation. We now apply this insight to our rateless context. The target
Thus, in tailoring our code in this Appendix to mekt](50), w&eiling rate for our rateless code 1, and, as pefoream, .
simultaneously ensure our code of Secfion VI-A will as well” = 1,2,..., denotes the threshold channel gains as obtained

We begin by recalling a useful property of layered codes }Hac%;).arin [5D) with[{36) and(97) reveals tHaTI(50) can be
general that we will apply. Consider an AWGN channel Witrr]ewritte?] asg ) ) ) (50)

gain 3 and noisez of variances?, and consider arL-layer m

block code that is successively decodable. If the constitue R = Z I g (0om), (98)
codes are capacity-achieving i.i.d. Gaussian codes, an&EM =1

successive cancellation is used, then the overall codebwill for all [ =1,2,...,L andm =1, 2,..., where

capacity achieving. More specifically, for any choice of gosv
p; for layersi = 1,2, ..., L that sum to the power constraint
P, the associated ratek for these layers will sum to the andr,, ;(ay,) is the mutual information in laydrfrom block
corresponding capacitiog(1 + |5|2P/0?). Equivalently, for m’ when the realized channel gaimis,. Thus, meetind (50) is
any choice of rated; that sum to capacity, the associategquivalent to finding powers,,  ; for each code block:’ and
powersp; will sum to the corresponding power constraint. Ifayer! so that for the given rate allocatiaR; (a) the powers
this latter case, any rate allocation that yield powers #rat are nonnegative, (b) the power constraint is met, and (chwhe

R =R/L (99)

all nonnegative is a valid one. the channel gain is,,, the mutual information accumulated
To see this, let the relevant codebooks for the layers Bethelth layer after receiving code blocks2, ..., m equals
€y,...,Cr, and let the overall codeword be denoted Ry.
Since the power constraint is automatically satisfied by any
c=a+-+cL, (94) assignment of powers that achieves the target rates, icesiffi

where theg; € G, are independently selected codewords drav&(r% establish tha((38) has a solution with nonnegative aped

for each layer. The overall code rate is the sum of the ratesr.. -
oh ‘ayer. v : u . SThe solution exists and is unigue, as can be established by
of the individual codes. The overall power of the coddis=

induction onm. Specifically, form = 1 the rateless code is
pit -+ PL . . » an ordinary layered code and the powgss, ..., p;.;, may
From the mutual information decomposition be computed recursively from [c{(98)] ’ '
L m
I(&y)=>_1 (95) Ry =Y log(1+ SNR, i(am)), (100)

=1 m’/=1
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TABLE IV

PER-LAYER POWER ASSIGNMENT,,, ; AND CHANNEL GAIN In this case, we determine our gain matrix
THRESHOLDSq,;, FOR THE INITIAL BLOCKS OF AN L = 4 LAYER
RATELESS CODE WITH TOTAL POWERP = 255, NOISE VARIANCE 02 = 1, — |91 G2 913 (104)
AND PER-LAYER RATE R/L = 1 B/s/Hz. g21 g22  g23
T R as a function of the ceiling rat®, where the second row also
gain (dB) 000 -1230 1678 -19.29 2099 depends on the realized channel g&inexperienced by the
=1 3.00 40.80 4898 5577 5879 first incremental redundancy block.

l=2| 1200 8670 6121 6058  61.65 ; P ; ; .
1800 8670  Bls> 7148 6720 As in the time-invariant case, we may without loss of gener

Z 192.00 4080 6348 6716  67.06 ality take the first row and column to be real and nonnegative.
Assume, also without loss of generality, that = 1 and

o2 = 1. Then the first row ofa, which corresponds to the first
redundancy block, is computed exactly as in the time-iavdri

with SNR,, i(a,) as given in[(4) for = 1,..., L. case. In particular, fronf (64) with, = 1, it must satisfy
For the induction hypothesis, assume we have a power

l
l

assignment for the firstn blocks that satisfiesT {1D0). To R/3 =log(1+gi)) (105)
find the power assignment for then + 1)st block, observe 2R/3 = log(1 + g%, + g%) (106)

that when the channel gain decreases fram t0 au,41 3R/3 = log(1 2 2 2
. . = +911 + 912 + 107

the per-layer mutual information of every block decreases. _ / 8 911. 91>+ 91s) (107)

A nonnegative power must be assigned to every layer in tiggether with the power constraint

(m + 1)st code block to compensate for the shortfall.

i ) : ) P =g} + g5» + 93 108
The mutual information shortfall in thih layer is g T 912 T s (108)
- Thus, withz £ 2%/6 we have
Apiig=Ri— Y log(1+SNRy i(ami1)),  (101) P=2"_1=2%-1 (109)
m’/=1
. ~and
and the powep,,;; needed to make up for this shortfall is ) " )
the solution to g =208 1 =421, (110)
2:R/3 R/3 _ — 22 _
A =log(1+ SNRyc1 (o)), (102) g =2" (20 ~1) =a’@” =1, (1)
. G2y = 22B3 (2R3 _ 1) = 2% (2% — 1). (112)
viz., L L .
The derivation now departs from the time-invariant case.
Pl = (22Am+u 1) Recall thats, is the realized channel gain for the first block.
e 9 A second redundancy block is thus needed whan < a;.
(Pmg1a+ -+ Pmgti1 + Ug@“ ). (103) The target gain, is the solution to [cf.[(63)]
: ; %
| o v R=log(1+ P|Bi[*) +log(1 + Pa3),  (113)
This completes the induction. Perhaps counter to intuition
even if the per-layer rateB, ..., Ry, are set equal, the per-Which is 1= B2
layer shortfallsA,, 41,1, . . ., Am+1,z Will not be equal. Thus, a§ = HTlﬁllz (114)
within a layer the effective SNR and mutual information will _ 1.
vary from block to block. Using (64) form = 2 andl = 1 yields
Egs. [I01) and{103) are easily evaluated numerically. An R/3 = log(1 + |81[2g% + adgy). (115)

example is given in Tabl o . .
Finally, since this result holds regardless of the choice &ubstituting the previously computed expressidns](11@) an
the constituent?;, it will hold for the particular choice[(39), (I14) for g7, anda3 and solving forgy, yields

whence [(BD). g5, = (2 = 1)(1 + P|B1]?). (116)

As in the time-invariant case, to solve for the rest of the
second row ofG we use [(6Y) withm = [ = 2 together with
the requirement that the first and second rows be orthogonal.
It is useful at this stage to switch to polar coordinates, i.e
As the simplest example, for the caseMf= 2 redundancy g = |g22|e’?* andges = |go3|e??z.
blocks andL = 3 layers the constraint§ (64) can be met, i.e., Orthogonality of the first and second rows means that
a perfect rateless code is possible provides not too large.

APPENDIXC
PERFECTL = 3, M = 2 RATELESSSOLUTION FOR
TIME-VARYING CHANNEL

0 = g11921 + g12|g22]e?% + g13]g2s|e??2. (117)

*If one were aiming to use a rateless code of the type desciibed The three terms in the above expression may be viewed as the
Sectio V1] in practice, in calculating a power allocationeoshould take into

account the gap to capacity of the particular base code hg&eg. Details Iegs of a trlangle, SO by the law of cosines

of this procedure for the case of perfect rateless codes iae@ @s part of 9 2 2 9 9 2

the description of the simulations in Sectior IX. For theeca near perfect 2911921912|922| cos 01 = gis|g23|” — 911921 — 912|922/
codes, the corresponding procedure is described_in [28]. (118)
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We now use[(64) withn = [ = 2 to infer that Power Allocation

92R/3 _ 24 _ ot (I -+ dia 2 W21 G Gl 119 As in the corresponding development for the time-invariant
* et(I+diagl|Ai[7], 02} G22Ga). - (119) case in Sectiof B, a suitable power allocation for our con-

To expand this expression, we compute struction is obtained as that which is optimum for a slightly
) ) o different construction, which we now develop. In this seswti
G0Gl, = g1 + 912 9119212+912|9222|€ , (120) different (independent) codebooks are used for different r
- (*) 921+ lg22| dundancy blocks, and we tal@(n) to be independent af,
where (x) is the complex conjugate of the upper right entr$0 thatG(n) = P, whereP is as given in[(40). _
from which we find The mutual information in théth layer of themth block is
then
det(I + diag{|81[*|, 03} G2,2G] ) = I = log(1 + SNRy, 1(Bm))- (127)
81703 (97119221 + 972951 — 2911921 912]922| cos 1) where
27 2 2 27 2 2 2
+ |51| (911 + 912) + 042(921 + |922| ) + 1. (121) SNRm,l(ﬁm) — |B |2(p 1|im| pj—bll) ; 1) 1 . (128)
Substituting [T18) into[{121) and using (119) yields e "
g ) {121 )Y is the associated per-layer SNR experienced during suceess
zt = B3 decoding.

2 2 2 2 2 2 2 2 2 2 We now obtain the elements & recursively. We proceed
: + - + + _ :
(911]922| 912921 = 913923 11921 912|9(2122|2)) from the first blockm = 1 to block M/, where in each block:
we start by determining’,, ; and proceed up througR,, ..
By definition of oy, we have

Finally, substituting the expressions ff,, 92,, 9%, 931, =
anda? computed above, using the power constraint log [ 1+ af ZPl,z =R.
=1

+ 18112 (931 + g32) + a3 (931 + |g22/°) + 1. (123)

2 _ 2 2
(923" = P = [g22|” — 921, (124) Viewing the layering as superposition coding for a multi-
solving for |gs»|?, and simplifying terms, we arrive at access channel, it is clear that any rate vector is achieadl
long as its sum-rate i®. We may therefore obtain an equal
ol 21 rate per layer by taking 1,..., P,z such that
g22|" =
L+ (26 = 1)[51? log(1+ P jo?)=R/L, 1=1,...,L. (129)
2 2,10 8 6 4 2 .. .
: (517 F A @ +2" —2” —a" -2+ 1) Upon receiving knowledge df; | we proceed to determine the

4/ 6 2 power allocation for blockn = 2. More generally, suppose the
— BT -1) ) (125) power allocations through block — 1 have been determined
Evidently, a necessary condition for the existence of &'d we have now acquired channel state knowledge through
solution forG is thatg2, + |g22|? < P. It can be shown that Bm—1. TO determine. the allpcation for plockn, we first
the sum of the powers on the first two layers is maximizegPMPute the mutual information shortfall in layeas

when|s;| — 1, and then the necessary condition simplifies to R mz—:l
mil == — log(1 + SNRy 1(Bm))- (130)
2R+1 _ 22R/3+1 < 2R _ 1’ (126) L vt
which may be shown to hold for alt < log(2 + v/5) ~ 2.08 By the induction hypothesis, had the realized channel gain
bits per complex symbol. been|B,,—1| = am—1, thenA,,; would be zero for all =

The final step—a straightforward exercise, the details &f - -» L+ NOW since we havef,,—1| < a,-—1, clearly the

which we omit—is to apply the triangle inequality 0 (117) tehortfall is positive for all layers. Also, by definition af,,,,

prove that the required triangle exists, and thus the phasesVe also have

andf,. L
’ Am =3 Ay =log(1+ Pa2,). (131)
=1
APPENDIXD . .
NEAR-PERFECTRATELESS CODES FORTIME-VARYING We then solve fopm, 1, ., pm,L, in order, via
CHANNELS log(1 4+ SNRy, i(avm)) = A (132)

Our construction is a slight generalization of the corre- The resulting power allocation ensures that the aggregate
sponding construction in Sectign VIl for time-invariantath mutual information per layer is at lea&/L if || > am
nels. First, we fixM, R, L, and the associated codebookw#hen i.i.d. Gaussian codebooks for all layers and blocks.
Ci,...,C, each of rateR'/L for some R" < R to be However, we wish to use the same setlofcodebooks for
determined. Using;(n) andx,, (n) to denote thexth elements all redundancy blocks, to keep decoding complexity low. We
of codewordc; and redundancy block,,, respectively, we return to this problem next, but in doing so will exploit this
again have[(38). power allocation.



Encoding

In our construction we restrict our attention to an encodin
of the form described in Sectign VIIA. In particular, te&n)
are of the form[(39) with[{40) and(#1), with th&, ;(n) all
i.i.d. random variables im, [, andn, and drawn independently [2]
of all other random variables, including noises, messaayes,
codebooks. As before, it is sufficient fak,, ;(n) to take on |3
only values#1, and with equal probability.

Decoding 4]
Decoding proceeds in a manner analogous to that described
in SectiorLVI[-B for the time-invariant case. In particylsince  [3
G(n) is drawn i.i.d., the overall channel is i.i.d., and thus
we may express the channel model in terms of an arbitrang
individual element in the block. Specifically, assume thnt t
channel gain for blockn is the minimal required,, = a;,,

. (7]
then our received symbol can be expressed asl[[cf. (42)]

Y1 < Z] 8]
Ym L Zm [
whereG = P ® D, with G denoting the arbitrary element
in the sequencé(n), and wherey,, is the corresponding [10]
received symbol from redundancy blogK (and similarly for
Cm'y Zm!, D) [11]
As in the time-invariant case, it is sufficient to employ,
successive cancellation decoding with simple maximabrati
combining (MRC) of the redundancy blocks. In this case, tH&]
effective SNR at which thigh layer is decoded fromn blocks

L

via such MRC decoding is given by [cf._{48)] [14]
SNRurc = » . SNRy/1(Bm), (133) 4

m/=1
with SNR,,/ ;(8n,) is as given in[(128). [16]

Efficiency Analysis [17]
To show that the resulting scheme is asymptotically perfect
we first note that when random dither encoding, MRC deco#!
ing, and capacity-achieving base codes are used, the mu%yg}l

information I/, , satisfies [cf.[(55)]

Irln,l > log (1 + SNRyrc(8m)) (134)

with SNRyrc(8r) as in [138).
Again the efficiency of the scheme depends on the choigg

of power allocation matrix[{40). Recall that we may further
bound I,’ml for all m by (&8). Thus, if we choose the rate
R"/L of the base code in each layer to thel(57) thed (5@
ensures decodability after. blocks are received when the
channel gain satisfiel,,,| > .., as required. Moreover, the
efficiency R” /R can be made as close as desired to one by
taking L sufficiently large.

[20]
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