114,961 research outputs found

    Quantum Switch for the Quantum Internet: Noiseless Communications through Noisy Channels

    Full text link
    Counter-intuitively, quantum mechanics enables quantum particles to propagate simultaneously among multiple space-time trajectories. Hence, a quantum information carrier can travel through different communication channels in a quantum superposition of different orders, so that the relative time-order of the communication channels becomes indefinite. This is realized by utilizing a quantum device known as quantum switch. In this paper, we investigate, from a communication-engineering perspective, the use of the quantum switch within the quantum teleportation process, one of the key functionalities of the Quantum Internet. Specifically, a theoretical analysis is conducted to quantify the performance gain that can be achieved by employing a quantum switch for the entanglement distribution process within the quantum teleportation with respect to the case of absence of quantum switch. This analysis reveals that, by utilizing the quantum switch, the quantum teleportation is heralded as a noiseless communication process with a probability that, remarkably and counter-intuitively, increases with the noise levels affecting the communication channels considered in the indefinite-order time combination.Comment: 14 pages, double colum

    Performance analysis of quantum key distribution in underwater turbulence channels

    Get PDF
    The current literature on quantum key distribution is limited mainly to transmissions over fiber optic, atmospheric, or satellite links and is not directly applicable to underwater environments with different channel characteristics. In this paper, we analyze the quantum bit error rate (QBER) and secret key rate (SKR) performance of the well-known BB84 protocol in underwater channels. As a path loss model, we consider a modified version of the Beer-Lambert formula, which takes into account the effect of scattering. We derive a closed-form expression for the wave structure function to determine the average power transfer over a turbulent underwater path and use this to obtain an upper bound on QBER as well as a lower bound on SKR. Based on the derived bounds, we present the performance of the BB84 protocol in different water types including dear, coastal, and turbid and under different atmospheric conditions such as clear, hazy, and overcast. We further investigate the effect of system parameters such as aperture size and detector field of view on QBER and SKR performance metrics.TÜBİTA

    Vetoes for Inspiral Triggers in LIGO Data

    Full text link
    Presented is a summary of studies by the LIGO Scientific Collaboration's Inspiral Analysis Group on the development of possible vetoes to be used in evaluation of data from the first two LIGO science data runs. Numerous environmental monitor signals and interferometer control channels have been analyzed in order to characterize the interferometers' performance. The results of studies on selected data segments are provided in this paper. The vetoes used in the compact binary inspiral analyses of LIGO's S1 and S2 science data runs are presented and discussed.Comment: Submitted to Classical and Quantum Gravity for the GWDAW-8 proceeding

    Quantum reading of digital memory with non-Gaussian entangled light

    Full text link
    It has been shown recently (Phys. Rev. Lett. 106, 090504 (2011)) that entangled light with Einstein-Podolsky-Rosen (EPR) correlations retrieves information from digital memory better than any classical light. In identifying this, a model of digital memory with each cell consisting of reflecting medium with two reflectivities (each memory cell encoding the binary numbers 0 or 1) is employed. The readout of binary memory essentially corresponds to discrimination of two Bosonic attenuator channels characterized by different reflectivities. The model requires an entire mathematical paraphernalia of continuous variable Gaussian setting for its analysis, when arbitrary values of reflectivities are considered. Here we restrict to a basic quantum read-out mechanism with non-Gaussian entangled states of light, with the binary channels to be discriminated being ideal memory characterized by reflectivity one i.e., an identity channel and thermal noise channel, where the signal light illuminating the memory location gets completely lost (zero reflectivity) and only a white thermal noise hitting the upper side of the memory reaches the decoder. We compare the quantum reading efficiency of entangled light with any classical source of light in this model. We show that entangled transmitters offer better reading performance than any classical transmitters of light in the regime of low signal intensity.Comment: 7 pages, 6 figures, To appear in Phys. Rev.

    Improved Digital Quantum Simulation by Non-Unitary Channels

    Full text link
    Simulating quantum systems is one of the most promising avenues to harness the computational power of quantum computers. However, hardware errors in noisy near-term devices remain a major obstacle for applications. Ideas based on the randomization of Suzuki-Trotter product formulas have been shown to be a powerful approach to reducing the errors of quantum simulation and lowering the gate count. In this paper, we study the performance of non-unitary simulation channels and consider the error structure of channels constructed from a weighted average of unitary circuits. We show that averaging over just a few simulation circuits can significantly reduce the Trotterization error for both single-step short-time and multi-step long-time simulations. We focus our analysis on two approaches for constructing circuit ensembles for averaging: (i) permuting the order of the terms in the Hamiltonian and (ii) applying a set of global symmetry transformations. We compare our analytical error bounds to empirical performance and show that empirical error reduction surpasses our analytical estimates in most cases. Finally, we test our method on an IonQ trapped-ion quantum computer accessed via the Amazon Braket cloud platform, and benchmark the performance of the averaging approach.Comment: 24 pages, 9 figure
    corecore