13,112 research outputs found

    KALwEN: a new practical and interoperable key management scheme for body sensor networks

    Get PDF
    Key management is the pillar of a security architecture. Body sensor networks (BSNs) pose several challenges–some inherited from wireless sensor networks (WSNs), some unique to themselves–that require a new key management scheme to be tailor-made. The challenge is taken on, and the result is KALwEN, a new parameterized key management scheme that combines the best-suited cryptographic techniques in a seamless framework. KALwEN is user-friendly in the sense that it requires no expert knowledge of a user, and instead only requires a user to follow a simple set of instructions when bootstrapping or extending a network. One of KALwEN's key features is that it allows sensor devices from different manufacturers, which expectedly do not have any pre-shared secret, to establish secure communications with each other. KALwEN is decentralized, such that it does not rely on the availability of a local processing unit (LPU). KALwEN supports secure global broadcast, local broadcast, and local (neighbor-to-neighbor) unicast, while preserving past key secrecy and future key secrecy (FKS). The fact that the cryptographic protocols of KALwEN have been formally verified also makes a convincing case. With both formal verification and experimental evaluation, our results should appeal to theorists and practitioners alike

    Cooperative medium access control based on spectrum leasing

    No full text
    Based on cooperative spectrum leasing, a distributed “win–win” (WW) cooperative framework is designed to encourage the licensed source node (SN) to lease some part of its spectral resources to the unlicensed relay node (RN) for the sake of simultaneously improving the SN’s achievable rate and for reducing the energy consumption (EC). The potential candidate RNs carry out autonomous decisions concerning whether to contend for a cooperative transmission opportunity, which could dissipate some of their battery power, while conveying their traffic in light of their individual service requirements. Furthermore, a WW cooperative medium-access-control (MAC) protocol is designed to implement the proposed distributed WW cooperative framework. Simulation results demonstrate that our WW cooperative MAC protocol is capable of providing both substantial rate improvements and considerable energy savings for the cooperative spectrum leasing system

    TCP over low-power and lossy networks: tuning the segment size to minimize energy consumption

    Full text link
    Low-power and Lossy Networks (LLNs), like wireless networks based upon the IEEE 802.15.4 standard, have strong energy constraints, and are moreover subject to frequent transmission errors, not only due to congestion but also to collisions and to radio channel conditions. This paper introduces an analytical model to compute the total energy consumption in an LLN due to the TCP protocol. The model allows us to highlight some tradeoffs as regards the choice of the TCP maximum segment size, of the Forward Error Correction (FEC) redundancy ratio, and of the number of link-layer retransmissions, in order to minimize the total energy consumption.Comment: TELECOM Bretagne Research Repor

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    HepSim: a repository with predictions for high-energy physics experiments

    Get PDF
    A file repository for calculations of cross sections and kinematic distributions using Monte Carlo generators for high-energy collisions is discussed. The repository is used to facilitate effective preservation and archiving of data from theoretical calculations, as well as for comparisons with experimental data. The HepSim data library is publicly accessible and includes a number of Monte Carlo event samples with Standard Model predictions for current and future experiments. The HepSim project includes a software package to automate the process of downloading and viewing online Monte Carlo event samples. A data streaming over a network for end-user analysis is discussed.Comment: 12 pages, 2 figure
    corecore