22 research outputs found

    Measurement-Adaptive Cellular Random Access Protocols

    Get PDF
    This work considers a single-cell random access channel (RACH) in cellular wireless networks. Communications over RACH take place when users try to connect to a base station during a handover or when establishing a new connection. Within the framework of Self-Organizing Networks (SONs), the system should self- adapt to dynamically changing environments (channel fading, mobility, etc.) without human intervention. For the performance improvement of the RACH procedure, we aim here at maximizing throughput or alternatively minimizing the user dropping rate. In the context of SON, we propose protocols which exploit information from measurements and user reports in order to estimate current values of the system unknowns and broadcast global action-related values to all users. The protocols suggest an optimal pair of user actions (transmission power and back-off probability) found by minimizing the drift of a certain function. Numerical results illustrate considerable benefits of the dropping rate, at a very low or even zero cost in power expenditure and delay, as well as the fast adaptability of the protocols to environment changes. Although the proposed protocol is designed to minimize primarily the amount of discarded users per cell, our framework allows for other variations (power or delay minimization) as well.Comment: 31 pages, 13 figures, 3 tables. Springer Wireless Networks 201

    Performance analysis of a threshold-based dynamic TXOP scheme for intra-AC QoS in wireless LANs

    Get PDF
    PublishedJournal ArticleThis is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.The IEEE 802.11e Enhanced Distributed Channel Access (EDCA) protocol has been proposed for provisioning of differentiated Quality-of-Service (QoS) between various Access Categories (ACs), i.e., inter-AC QoS, in Wireless Local Area Networks (WLANs). However, the EDCA lacks the support of the intra-AC QoS provisioning, which is indispensable in practical WLANs since the network loads are always asymmetric between traffic flows of ACs with the same priority. To address the intra-AC QoS issue, this paper proposes a Threshold-Based Dynamic Transmission Opportunity (TBD-TXOP) scheme which sets the TXOP limits adaptive to the current status of the transmission queue based on the pre-setting threshold. An analytical model is further developed to evaluate the QoS performance of this scheme in terms of throughput, end-to-end delay, and frame loss probability. NS-2 simulation experiments validate the accuracy of the proposed analytical model. The performance results demonstrate the efficacy of TBD-TXOP for the intra-AC QoS differentiation. © 2013 Elsevier B.V. All rights reserved

    On the Asymptotic Validity of the Decoupling Assumption for Analyzing 802.11 MAC Protocol

    Get PDF
    Performance evaluation of the 802.11 MAC protocol is classically based on the decoupling assumption, which hypothesizes that the backoff processes at different nodes are independent. This decoupling assumption results from mean field convergence and is generally true in transient regime in the asymptotic sense (when the number of wireless nodes tends to infinity), but, contrary to widespread belief, may not necessarily hold in stationary regime. The issue is often related with the existence and uniqueness of a solution to a fixed point equation; however, it was also recently shown that this condition is not sufficient; in contrast, a sufficient condition is a global stability property of the associated ordinary differential equation. In this paper, we give a simple condition that establishes the asymptotic validity of the decoupling assumption for the homogeneous case. We also discuss the heterogeneous and the differentiated service cases and formulate a new ordinary differential equation. We show that the uniqueness of a solution to the associated fixed point equation is not sufficient; we exhibit one case where the fixed point equation has a unique solution but the decoupling assumption is not valid in the asymptotic sense in stationary regime.Comment: 16 pages, 4 figures, accepted for publication in IEEE Transactions on Information Theor

    How CSMA/CA With Deferral Affects Performance and Dynamics in Power-Line Communications

    Get PDF
    Power-line communications (PLC) are becoming a key component in home networking, because they provide easy and high-throughput connectivity. The dominant MAC protocol for high data-rate PLC, the IEEE 1901, employs a CSMA/CA mechanism similar to the backoff process of 802.11. Existing performance evaluation studies of this protocol assume that the backoff processes of the stations are independent (the so-called decoupling assumption). However, in contrast to 802.11, 1901 stations can change their state after sensing the medium busy, which is regulated by the so-called deferral counter. This mechanism introduces strong coupling between the stations and, as a result, makes existing analyses inaccurate. In this paper, we propose a performance model for 1901, which does not rely on the decoupling assumption. We prove that our model admits a unique solution for a wide range of configurations and confirm the accuracy of the model using simulations. Our results show that we outperform current models based on the decoupling assumption. In addition to evaluating the performance in steady state, we further study the transient dynamics of 1901, which is also affected by the deferral counter.Comment: To appear, IEEE/ACM Transactions on Networking 201

    Spatial Fluid Limits for Stochastic Mobile Networks

    Full text link
    We consider Markov models of large-scale networks where nodes are characterized by their local behavior and by a mobility model over a two-dimensional lattice. By assuming random walk, we prove convergence to a system of partial differential equations (PDEs) whose size depends neither on the lattice size nor on the population of nodes. This provides a macroscopic view of the model which approximates discrete stochastic movements with continuous deterministic diffusions. We illustrate the practical applicability of this result by modeling a network of mobile nodes with on/off behavior performing file transfers with connectivity to 802.11 access points. By means of an empirical validation against discrete-event simulation we show high quality of the PDE approximation even for low populations and coarse lattices. In addition, we confirm the computational advantage in using the PDE limit over a traditional ordinary differential equation limit where the lattice is modeled discretely, yielding speed-ups of up to two orders of magnitude

    Capacity of Asynchronous Random-Access Scheduling in Wireless Networks

    Get PDF
    Abstract—We study the throughput capacity of wireless networks which employ (asynchronous) random-access scheduling as opposed to deterministic scheduling. The central question we answer is: how should we set the channel-access probability for each link in the network so that the network operates close to its optimal throughput capacity? We design simple and distributed channel-access strategies for random-access networks which are provably competitive with respect to the optimal scheduling strategy, which is deterministic, centralized, and computationally infeasible. We show that the competitiveness of our strategies are nearly the best achievable via random-access scheduling, thus establishing fundamental limits on the performance of randomaccess. A notable outcome of our work is that random access compares well with deterministic scheduling when link transmission durations differ by small factors, and much worse otherwise. The distinguishing aspects of our work include modeling and rigorous analysis of asynchronous communication, asymmetry in link transmission durations, and hidden terminals under arbitrary link-conflict based wireless interference models. I

    On-line residual capacity estimation for resource allocation in wireless mesh networks

    Get PDF
    Contention-based multi access scheme of 802.11 based wireless mesh networks imposes difficulties in achieving predictable service quality in multi-hop networks. In order to offer effective advanced network services such as flow admission control or load balancing, the residual capacity of the wireless links should be accurately estimated. In this work, we propose and validate an algorithm for the residual bandwidth of wireless mesh network. By collecting transmission statistics from the nearby nodes that are one and two hops away and by using a basic collision detection mechanism, the packet delivery failure probability for a given link is estimated. The packet failure probability is used in an analytical model to calculate the maximum allowable traffic level for this link in saturation condition. We evaluate the efficacy of the method via OPNET simulations, and show that the percent estimation error is significantly lower than a recent prominent estimation method; i.e. error is between 0.5-1.5%. We demonstrate that flow admission control is successfully achieved in a realistic WMN scenario based on accurate link residual bandwidth estimates. A flow control algorithm based on residual bandwidth keeps the unsatisfied traffic demand bounded and at a negligibly low level. We also propose a routing metric that uses residual bandwidth as link metric and we show that this routing algorithm results in a significant increase in network throughput compared to other popular metrics
    corecore