452 research outputs found

    Towards a System Theoretic Approach to Wireless Network Capacity in Finite Time and Space

    Get PDF
    In asymptotic regimes, both in time and space (network size), the derivation of network capacity results is grossly simplified by brushing aside queueing behavior in non-Jackson networks. This simplifying double-limit model, however, lends itself to conservative numerical results in finite regimes. To properly account for queueing behavior beyond a simple calculus based on average rates, we advocate a system theoretic methodology for the capacity problem in finite time and space regimes. This methodology also accounts for spatial correlations arising in networks with CSMA/CA scheduling and it delivers rigorous closed-form capacity results in terms of probability distributions. Unlike numerous existing asymptotic results, subject to anecdotal practical concerns, our transient one can be used in practical settings: for example, to compute the time scales at which multi-hop routing is more advantageous than single-hop routing

    Modelling interference in a CSMA/CA wireless network

    Get PDF

    Performance modeling of a bottleneck node in an IEEE 802.11 ad-hoc network

    Get PDF
    This paper presents a performance analysis of wireless ad-hoc networks, with IEEE 802.11 as the underlying Wireless LAN technology. WLAN has, due to the fair radio resource sharing at the MAC-layer, the tendency to share the capacity equally amongst the active nodes, irrespective of their loads. An inherent drawback of this sharing policy is that a node that serves as a relay-node for multiple flows is likely to become a bottleneck. This paper proposes to model such a bottleneck by a fluid-flow model. Importantly, this is a model at the flow-level: flows arrive at the bottleneck node, and are served according to the sharing policy mentioned above. Assuming Poisson initiations of new flow transfers, we obtain insightful, robust, and explicit expressions for characteristics related to the overall flow transfer time, the buffer occupancy, and the packet delay at the bottleneck node. The analysis is enabled by a translation of the buffer dynamics at the bottleneck node in terms of an M/G/1 queueing model. We conclude the paper by an assessment of the impact of alternative sharing policies (which can be obtained by the IEEE 802.11E version), in order to improve the performance of the bottleneck

    Signal Strength Based Congestion Control in In MANET

    Get PDF
    All nodes in MANET (Mobile Ad-hoc Network) are mobile and dynamically connected in an arbitrary manner.  Mobility causes frequent link failure which results in packet losses. TCP assumes that these packet losses are due to congestion only. This wrong assumption requires packet retransmissions till packet arrives successfully at the receiver. Goal is to improve TCP performance by using signal strength based cross layer approach which obviously resolves the congestion. We are reviewing a signal strength based measurements to improve such packet losses and no need to retransmit packets. Node based and link based signal strength can be measured. If a link fails due to mobility, then signal strength measurement provides temporary higher transmission power to keep link alive. When a route is likely to fail due to weak signal strength of a node, it will find alternate path. consequently avoids congestion. We will make changes at MAC routing and routing layer to predict link failure. MANET hits the protocol's strength due to its highly dynamic features, thus in testing a protocol suitable for MANET implementation we have selected two routing protocols AODV and DSR. Packet Delivery Ratio, Packet Drop, Throughput and end to end delay are the metrics used for performance analysis of the AODV routing protocols. Keywords: Congestion  control, Signal strength, TCP performance ,Cross layer interaction, Route discover

    An analysis of IEEE 802.11 DCF and its application to energy-efficient relaying in multihop wireless networks

    Get PDF
    Cataloged from PDF version of article.We present an analytical model for the IEEE 802.11 DCF in multihop wireless networks that considers hidden terminals and accurately works for a large range of traffic loads. An energy model, which considers energy consumption due to collisions, retransmissions, exponential backoff and freezing mechanisms, and overhearing of nodes, and the proposed IEEE 802.11 DCF analytical model are used to analyze the energy consumption of various relaying strategies. The results show that the energy-efficient relaying strategy depends significantly on the traffic load. Under light traffic, energy spent during idle mode dominates, making any relaying strategy nearly optimal. Under moderate traffic, energy spent during idle and receive modes dominates and multihop transmissions become more advantageous where the optimal hop number varies with processing power consumed at relay nodes. Under very heavy traffic, where multihopping becomes unstable due to increased collisions, direct transmission becomes more energy efficient. The choice of relaying strategy is observed to affect energy efficiency more for large and homogeneous networks where it is beneficial to use multiple short hops each covering similar distances. The results indicate that a cross-layered relaying approach, which dynamically changes the relaying strategy, can substantially save energy as the network traffic load changes in time. © 2011 IEEE

    Fairness issues in multihop wireless ad hoc networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Cross-layer schemes for performance optimization in wireless networks

    Get PDF
    Wireless networks are undergoing rapid progress and inspiring numerous applications. As the application of wireless networks becomes broader, they are expected to not only provide ubiquitous connectivity, but also support end users with certain service guarantees. End-to-end delay is an important Quality of Service (QoS) metric in multihop wireless networks. This dissertation addresses how to minimize end-to-end delay through joint optimization of network layer routing and link layer scheduling. Two cross-layer schemes, a loosely coupled cross-layer scheme and a tightly coupled cross-layer scheme, are proposed. The two cross-layer schemes involve interference modeling in multihop wireless networks with omnidirectional antenna. In addition, based on the interference model, multicast schedules are optimized to minimize the total end-to-end delay. Throughput is another important QoS metric in wireless networks. This dissertation addresses how to leverage the spatial multiplexing function of MIMO links to improve wireless network throughput. Wireless interference modeling of a half-duplex MIMO node is presented. Based on the interference model, routing, spatial multiplexing, and scheduling are jointly considered in one optimization model. The throughput optimization problem is first addressed in constant bit rate networks and then in variable bit rate networks. In a variable data rate network, transmitters can use adaptive coding and modulation schemes to change their data rates so that the data rates are supported by the Signal to Noise and Interference Ratio (SINR). The problem of achieving maximum throughput in a millimeter-wave wireless personal area network is studied --Abstract, page iv
    corecore