27,636 research outputs found

    Spare parts inventory control for an aircraft component repair shop

    Get PDF
    We study spare parts inventory control for a repair shop for aircraft components. Defect components that are removed from the aircraft are sent to such a shop for repair. Only after inspection of the component, it becomes clear which specific spare parts are needed to repair it, and in what quantity they are needed. Market requirements on shop performance are reflected in fill rate requirements on the turn around times of the repairs for each component type. The inventory for spare parts is controlled by independent min-max policies. Because parts may be used in the repair of different component types, the resulting optimization problem has a combinatorial nature. Practical instances may consist of 500 component types and 4000 parts, and thus pose a significant computational challenge. We propose a solution algorithm based on column generation. We study the pricing problem, and develop a method that is very efficient in (repeatedly) solving this pricing problem. With this method, it becomes feasible to solve practical instances of the problem in minutes

    On two-echelon inventory systems with Poisson demand and lost sales

    Get PDF
    We derive approximations for the service levels of two-echelon inventory systems with lost sales and Poisson demand. Our method is simple and accurate for a very broad range of problem instances, including cases with both high and low service levels. In contrast, existing methods only perform well for limited problem settings, or under restrictive assumptions.\u

    Performance Evaluation of Stochastic Multi-Echelon Inventory Systems: A Survey

    Get PDF
    Globalization, product proliferation, and fast product innovation have significantly increased the complexities of supply chains in many industries. One of the most important advancements of supply chain management in recent years is the development of models and methodologies for controlling inventory in general supply networks under uncertainty and their widefspread applications to industry. These developments are based on three generic methods: the queueing-inventory method, the lead-time demand method and the flow-unit method. In this paper, we compare and contrast these methods by discussing their strengths and weaknesses, their differences and connections, and showing how to apply them systematically to characterize and evaluate various supply networks with different supply processes, inventory policies, and demand processes. Our objective is to forge links among research strands on different methods and various network topologies so as to develop unified methodologies.Masdar Institute of Science and TechnologyNational Science Foundation (U.S.) (NSF Contract CMMI-0758069)National Science Foundation (U.S.) (Career Award CMMI-0747779)Bayer Business ServicesSAP A
    • …
    corecore