3 research outputs found

    Análisis de flujo de carga en el sistema de distribución eléctrico basado en cadenas de Markov

    Get PDF
    The purpose of this document is analyze the load variation that exists in an electric power system by increasing the demand for electric energy consumption, supplying representative loads such as: electric cars and induction cookers connected to the distribution system; The analysis is done by means of the stochastic method of "MARKOV CHAINS" a discrete time and space of continuous states, which defines the possible states of operation as is the connection and disconnection of the loads for a determined period of 24 hours, in The analysis of results shows the variation of load for each half hour of consumption. To determine these results, the mathematical simulation software "MATLAB" is used, in which the flow of power is solved by means of the "Newton Raphson" algorithm and the electric power is optimized. Of the simulation with its relevant graphs supporting the case studies proposed in this document. For the pertinent purposes, the twelve-bar power system of the "IEEE" has been taken as a reference, on which the load variation of the system will be worked on.El presente documento tiene como finalidad analizar la variación de carga que existe en un sistema eléctrico de distribución al incrementar la demanda de consumo de energía eléctrica, abasteciendo cargas representativas tales como: vehículos eléctricos y cocinas de inducción conectadas al sistema de distribución; el análisis se lo realiza mediante el método estocástico de “CADENAS DE MARKOV”, en tiempo discreto y en espacio de estados continuos, el cual define los posibles estados de funcionamiento, los cuales son la conexión y desconexión de las cargas por un periodo determinado de tiempo de 24 horas, en el análisis de resultados se observa la variación de carga cada por cada media hora de consumo. Para precisar estos resultados se utiliza el software de simulación matemática “MATLAB” en el cual se resuelve por medio del algoritmo de “Newton Raphson” el flujo de potencia y se optimiza la entrega de energía eléctrica, al final se presentan los análisis de resultados obtenidos de la simulación con sus graficas pertinentes sustentando los casos de estudio propuestos en este documento. Para los fines consecuentes se ha tomado como referencia el sistema eléctrico de potencia de doce barras de la “IEEE”, sobre el cual se trabajara en la variación de carga del sistema

    Analysis of Jump Linear Systems Driven by Lumped Processes

    Get PDF
    Safety critical control systems such as flight control systems use fault-tolerant technology to minimize the effect of faults and increase the dependability of the system. In fault-tolerant systems, the system availability process indicates the current operational mode of an interconnection of digital logic devices. It is a process that results from the transformation of the stochastic processes characterizing the availability of the devices forming the system. To assess safety critical control systems, the following measures of performance will be considered: the steady-state mean output power, the mean output energy, the mean time to failure and the mean time to repair. For this assessment it is important to determine the characteristics of the system availability process since both stability and the aforementioned measure of performance are directly dependent on it. When the system availability process results from a transformation of a homogeneous Markov chain, it is well-known that the resulting process is not necessarily a homogeneous Markov chain. In particular, when the Markov chain characterizing the faults is a zeroth order Markov chain, it is shown that the availability process results in another zeroth order Markov chain. Thus, all the results which are known to analyze closed-loop systems driven by a homogeneous Markov chain can be applied to the zeroth order Markov chain. However, simpler formulas that do not trivially follow from these Markov chain results can be derived in this case. Part of this dissertation is dedicated to the derivation of these new formulas. On the other hand, when the system availability results in either a non-homogeneous Markov chain or a non-Markov chain, the existing Markov results can not be directly applied. This problem is addressed here. The necessity for better integration of the fault tolerant and the control designs for safety critical systems is also addressed. The dependability of current designs is primarily assessed with measures of the interconnection of fault tolerant devices: the reliability metrics that include the mean time to failure and the mean time to repair. These metrics do not directly take into account the interaction of the fault tolerant components with the dynamics of the system. In this dissertation, a first step to better integrate fault tolerant and the control designs for safety critical systems is made. These are the problems that motivated this work. Therefore, the goals of this dissertation are: to develop a suitable methodology to analyze a jump linear system when the driving process is characterized by a zeroth order Markov chain, a non-homogeneous Markov chain and a non-Markov chain; and to integrate the analysis of jump linear systems with the reliability theory for network architectures
    corecore