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ABSTRACT 

ANALYSIS OF J U M P LINEAR SYSTEMS 

DRIVEN BY LUMPED PROCESSES 

Jorge R. Chavez Fuentes 
Old Dominion University, 2010 

Director: Dr. Oscar R. Gonzalez 

Safety critical control systems such as flight control systems use fault-tolerant 

technology to minimize the effect of faults and increase the dependability of the sys­

tem. In fault-tolerant systems, the system availability process indicates the current 

operational mode of an interconnection of digital logic devices. It is a process that 

results from the transformation of the stochastic processes characterizing the avail­

ability of the devices forming the system. To assess safety critical control systems, 

the following measures of performance will be considered: the steady-state mean out­

put power, the mean output energy, the mean time to failure and the mean time to 

repair. For this assessment it is important to determine the characteristics of the 

system availability process since both stability and the aforementioned measure of 

performance are directly dependent on it. When the system availability process re­

sults from a transformation of a homogeneous Markov chain, it is well-known that 

the resulting process is not necessarily a homogeneous Markov chain. In particular, 

when the Markov chain characterizing the faults is a zeroth order Markov chain, it 

is shown that the availability process results in another zeroth order Markov chain. 

Thus, all the results which are known to analyze closed-loop systems driven by a 

homogeneous Markov chain can be applied to the zeroth order Markov chain. How­

ever, simpler formulas that do not trivially follow from these Markov chain results 



can be derived in this case. Part of this dissertation is dedicated to the derivation 

of these new formulas. On the other hand, when the system availability results in 

either a non-homogeneous Markov chain or a non-Markov chain, the existing Markov 

results can not be directly applied. This problem is addressed here. The necessity 

for better integration of the fault tolerant and the control designs for safety critical 

systems is also addressed. The dependability of current designs is primarily assessed 

with measures of the interconnection of fault tolerant devices: the reliability metrics 

that include the mean time to failure and the mean time to repair. These metrics do 

not directly take into account the interaction of the fault tolerant components with 

the dynamics of the system. In this dissertation, a first step to better integrate fault 

tolerant and the control designs for safety critical systems is made. These are the 

problems that motivated this work. Therefore, the goals of this dissertation are: to 

develop a suitable methodology to analyze a jump linear system when the driving 

process is characterized by a zeroth order Markov chain, a non-homogeneous Markov 

chain and a non-Markov chain; and to integrate the analysis of jump linear systems 

with the reliability theory for network architectures. 
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CHAPTER I 

INTRODUCTION 

Ll MOTIVATION AND GENERAL ASSUMPTIONS 

An interconnection of L > 2 devices that are working together to accomplish a 

certain function is referred to as a network architecture. This dissertation is focused 

on the logical rather than the physical layout of a network. The operation of a 

network in a harsh environment like that caused, for example, by high intensity 

radiated fields, can result in faults, that is, a deviation from the correct functionality 

of a device. No fault due to aging or wear of the components forming the system is 

considered here. In addition, it is assumed that these faults are transient, that is, they 

only exist for a finite period of time. These faults will be called upsets. Since faults are 

unavoidable and flight control systems use complex closed-loop digital technology, it 

is important to consider the construction of dependable control systems with a fault-

tolerant communication network architecture capable of recovering after a fault and 

continuing operation while maintaining the closed-loop system's stability and desired 

level of performance. Since these fault-tolerant networks are the enabling technology 

in safety critical distributed control system applications, it is important to analyze 

the effect of the random jumps of functionality on the performance of the controlled 

dynamical system caused by an upset. 

Assume that the effect of an upset on each device forming a fault-tolerant network 

architecture for a flight control system is to put it in one of S modes of operation 
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during a period of time (the faults last one or more control sample periods Tp). 

Moreover, assume that the i-th device's mode is represented by a state of a zeroth 

or first order discrete-time homogeneous Markov chain (HMC) (see, e.g., [6], [18]) 

Zi(k), where i G J^L — {!> ••-, L} and k G Z+ = {0,1,...} denotes the sample period 

number. If these Markov chains (MCs) are stochastically independent, then the 

joint process, z{k) = (zi(k),..., Zi(fc)), is also an HMC [22]. This assumption also 

implies that the current mode of one device does not depend on the modes of the 

remaining devices during the same sample period. When the event {zi(k) = 0} 

occurs, it is said that the i-th device is operating as intended and, in general, the 

event {zi(k) — s} denotes the s-th mode of operation during the A>th sample period, 

where s G Is — {0,1,..., S — 1}, S > 2. A particular case of interest is when 5 = 2, 

that is, each device only has two modes of operation, 0 and 1. In this case, the event 

{zi(k) = 1} indicates that the i-th. device is not working correctly during the k-th 

sample period and the probability Pr(zj(fc) = 1) is called its probability of upset. In 

general, Pr(z,(fc) = s) is the state or mode probability for the k-th. sample period. 

From a control systems point of view, it is important to characterize the modes 

of operation of the fault-tolerant network as a function of the stochastic processes 

that characterize the modes of the interconnected components, z^k), since they 

determine the closed-loop system's modes of operation, and the switching between 

the different modes affects performance. The network's mode during the k-th sample 

period is assumed to be characterized by the random variable p{k) = (j>(z(h)), where 

(p is any memoryless and onto transformation of z(k) thereby inducing a well-defined 

stochastic process p(k) with state space 2^ = {0,1, ...,£ — 1} and 1 < £ < SL (see 

Section II.2). Since <f> reduces the number of states of z(k) from SL to £, it is called 
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a (MC) lumping transformation and p(k), a lumped process. It is well known (see, 

e.g., [19], [23]) that p(k) can be be either an r-th order HMC, r > 1, or a lumped 

non-homogeneous Markov chain (NHMC) or a non-Markov chain (NMC) whenever 

it is applied to a first order HMC. The expression lumped NHMC refers to a lumping 

transformation that results in an NHMC for some initial state probability vectors of 

the underlying process. In this dissertation, a new result is given that establishes 

conditions under which the process p{k) is characterized by a zeroth order MC, that 

is, an independent, identically distributed process (i.i.d.). In addition, by using the 

concept of a lumping matrix (see Definition II.2.5), a test to check when the process 

p(k) results in a first order HMC is provided. 

To analyze the effect of p(k) in the closed-loop control system, let x(k) G M.n 

represent the state of a system at the A>th sample period and x(0) = XQ be the 

initial state random vector with finite second moment. Consider now the jump 

linear system (JLS) driven by the lumped process p(k): 

x{k + 1) = Ap{k)x(k) + Bp{k)w(k), x(Q) = x0, (1.1.1a) 

y(k) = Cp{k)x(k), (1.1.1b) 

where the process w(k) € W that represents an input disturbance to the system is 

taken to be a white noise process independent of p(k) and x(0), and y(k) G R9 is 

the output of the system. The matrices A, B and C are indexed by the process p(k) 

to represent the switching operational mode of the system. The triple {AQ, B0, CO) 

represents the nominal closed-loop system. The study to be done here includes the 

analysis of the mean square stability (MSS), the steady-state mean output power, Jw, 

and the mean output energy, Jo, associated with the JLS (1.1.1) when the lumped 
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process p(k) is not necessarily an HMC. The mean output power and the mean 

output energy will be referred to as the output performance metrics of the system. 

In addition, the mean time to failure (MTTF) and the mean time to repair (MTTR) 

associated with the network architecture will also be analyzed. The metrics MTTF 

and MTTR will be jointly referred to as the network performance metrics. This 

analysis is done for the different statistical characteristics that the lumped process 

can take. From a control systems point of view, a particular interest of this work 

is to find connections between the output and the network performance metrics in 

order to see how the former are affected by the latter. The following section presents 

the specific problems that are solved in this dissertation. 

1.2 PROBLEM STATEMENT 

Let 0 be a lumping transformation and p(k) = (j)(z(k)), the lumped process 

that characterizes a network architecture where random upsets switch the modes 

of the closed-loop system represented by the JLS (1.1.1). To attain the goals of 

this dissertation, that is, to develop a suitable methodology to analyze a jump linear 

system driven by a lumped process that is not an HMC, and to integrate the analysis 

of jump linear systems with the reliability theory of a network architecture, the 

following problems will be solved. 

Problem 1. When p(k) is either a lumped NHMC or an NMC, determine: 

a) The probability distribution of p(k), Pj(k) = Pr(p(fc) = j), j € T^. 

b) The availability of the system at steady-state, lim Pr(p(A;) = 0), whenever this 
k—>oo 

limit exists. 



c) The one-step transition probabilities of p(k), 

Pij(k) - Pr(p(A; + 1) = j\p(k) = i), i,j G le, 

whenever these transition probabilities are well-defined. 

d) Conditions under which there exists the steady-state values of the transition prob­

abilities Pij(k), lim Pij(k), derive these steady-state values. 
fc—>oo 

Problem 2. Assuming that z{k) is an i.i.d. process, determine: 

a) Conditions under which p(k) is also an i.i.d. process. 

b) When p(k) is an i.i.d. process that drives the JLS (1.1.1), derive formulas for the 

output performance metrics, Jw and JQ. 

c) Determine the advantages of using these new formulas versus the formulas that 

assume an EMC. 

Problem 3. Develop a methodology to analyze the MSS and the output performance 

metrics of the JLS (1.1.1) when p(k) is either an NHMC or an NMC. 

Problem 4. When p(k) is an i.i.d. process, determine QP' and^ 
OPj 

p=p" p=p* 

where j e le andp* = (pi, ...,p|_1) is a point in [0, l]L = [0,1] x • • • x [0,1] such that 
s v y 

L times 

the JLS (1.1.1) is MSS. 

Problem 5. When p(k) is either an i.i.d. process or an EMC, show that Jw and Jo, 

of the JLS (1.1.1) driven by p(k) are explicit functions of the performance metrics of 

the network architecture represented by p(k). 

1.3 ORGANIZATION AND ACHIEVEMENTS 

This dissertation has five chapters. The solutions to the problems given in Section 

1.2 and related results are given in Chapters II, III and IV. Chapter V gives the 
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conclusions of the dissertation. In addition, there is an appendix at the end of the 

dissertation to briefly review some concepts about MCs. The organization of this 

dissertation is as follows. 

Problem 1 is entirely solved in Chapter II. A general network architecture and 

the system availability process, p(k) — (j>(z(k)), that characterizes it are introduced 

first. Next, the probability distribution of p{k) is derived. Moreover, the availability 

of the network and the availability at steady-state are defined and calculated. Next, 

it is shown that p(k) has well-defined one-step transition probabilities, which are 

derived and calculated at steady-state. Most of the reliability analysis has been done 

in continuous-time, particularly for continuous-time MCs [2]. When the network ar­

chitecture is characterized by discrete-time MCs, much less literature is available [4]. 

There is no literature for the case when the network architecture is characterized by a 

lumped process determined by a lumping transformation. One of the main contribu­

tions of this chapter is that the derivations concerning the statistical characterization 

of the process p{k) are completely general results as long as it is a well-defined pro­

cess (in particular, these results are independent of whether or not p{k) is an MC). 

An application of the results of Chapter II given in Section III.5 is to analyze the ex­

ponentially second moment stability of the JLS (1.1.1) when it is driven by a lumped 

NHMC. The exponentially second moment stability will be referred to here as mean 

square exponential stability (MSES). In this application, a new result is obtained that 

complements a test for checking MSES given in [11]. Finally, a section is dedicated 

to characterizing a lumping transformation, </>, in a network where the upsets are 

characterized by i.i.d. processes. The main result in this case is that the zeroth order 

Markov property is preserved under cf>. This result is useful in applications (see, e.g., 
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Example III.4.1). 

Problem 2a is solved in Section II.3 of Chapter II, and Problems 2b-c are 

solved in Chapter III, where a characterization of the JLS (1.1.1) is given when it 

is driven by the lumped process p(k). First, the output performance metrics are 

derived when p(k) is an i.i.d. process. These formulas are simpler than those given 

in [17], where these metrics were calculated when p(k) is a non-lumped HMC. These 

formulas, which are presented in Section II.3, do not trivially follow from the non-

lumped HMC case, and they are derived by using the smaller matrix A instead of the 

A2 matrix used in [17] (see Sections III.2 and III.3). This reduces the dimensionality 

of the formulas. Control system performance for an i.i.d. JLS has been addressed 

in [25-27], where the power spectral density is considered as the output performance 

of the system. The results obtained in this dissertation differ from the formulas given 

in this literature because the approach followed here is based on [8] and [17], where 

the definition considered for the output performance induces a norm rather than 

a semi-norm. In this sense the results obtained here represent, to the best of our 

knowledge, a new contribution in the theoretical analysis of JLSs. 

Problems 3 and 4 are also solved in Chapter III. Sensitivity formulas, which 

describe how the output performance metrics are affected by a small change in the 

probabilities of upset, are given in Section III.3. The analysis of MSS and the output 

performance metrics of the JLS (1.1.1) when p{k) is either a lumped NHMC or an 

NMC, which is Problem 4, have not been addressed before. The last section of the 

chapter is dedicated to developing a new result to cover this case. 

Problem 5 is solved in Chapter IV, where one of the main achievements of 

this dissertation is given. Specifically, a connection between a fault-tolerant network 
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architecture, which has been characterized in Chapter II by the system availability 

process p(fc), and a closed-loop control system, driven by p(k), is established. It is 

shown that J0 and Jw are functions of the MTTF and the MTTR. This relationship 

implies that is not possible to require a certain level of performance for the fault-

tolerant network without taking into account the reliability metrics of the system. 

This connection represents a new contribution in the theory that integrates two 

fields of study, dynamic system theory and reliability theory, which so far have been 

addressed separately. 
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CHAPTER II 

THE SYSTEM AVAILABILITY PROCESS OF A 

NETWORK ARCHITECTURE 

II. 1 INTRODUCTION 

This chapter characterizes the system availability process of a network architec­

ture. As explained in Chapter I, a fault randomly changes the operational mode of 

the devices forming the network, thereby changing the network's mode. The system 

availability process indicates at each time instant the operational mode at which 

the network is performing its intended function [35,43]. The network's mode is a 

manifestation of the relationship between the performance of the network and the 

performance of the devices under the presence of a fault. This relationship is accom­

plished by a structure function [3,24] or more general for a lumping transformation, 

0, which is a function that maps the modes of the devices, modeled here as the states 

of either a zeroth or a first order HMC, into a finite set resulting in another well-

defined stochastic process, the system availability process. To better understand 

the effect of faults on the performance metrics when the system is operating in a 

harsh environment, it is important to characterize the system availability process as 

a function of the processes that represent the modes of the devices. 

The term availability is a concept widely used by the computer engineering com­

munity. It is defined as the probability of an MC to stay in a set of operational states 

(Up states) at a given time. Availability has been studied mostly in continuous-time 
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reliability theory (see, e.g., [1,16,38] and the references therein). Results for the 

discrete-time case are less developed. An account of the state of the art and argu­

ments for the necessity of a discrete-time theory can be found, for example, in [4] 

and [29]. In [2], continuous and discrete-time reliability models are also presented. 

For a discrete-time NHMC there are fewer published results. This case has been ad­

dressed in [33-35], where the availability and the steady-state availability are denned 

and computed, and practical applications are given. In Section II.2, the concept of 

a (discrete-time) system availability process is formally introduced as the transfor­

mation 4> °f a n HMC z(k) (see Definition II.2.3). The notion of operational and 

non-operational states (Up and Down states, respectively) that are defined in the 

literature above are substituted here by a finite set of modes, for example the zero 

mode represents the Up states. In this chapter, a statistical characterization of the 

system availability process is done. This analysis, unlike the existing approaches, 

takes into account the properties of the transformation 0, and all the results are 

given in terms of the statistical characteristics of the underlying process z(k). A 

transformation of an HMC is not necessarily an MC [19,37], thus the results derived 

here are independent of whether or not the system availability is an MC, as long as 

it is a well-defined process. In this sense, the results presented here cover broader 

situations than those given in [34,35]. 

The rest of this chapter is organized as follows. The definitions of a lumping 

transformation and the system availability process are introduced in Section II.2. 

The probability distribution of the system availability process and the availability 

at steady-state are derived in this section. Furthermore, one-step transition prob­

abilities of the system availability process and the steady-state of these transition 
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probabilities are derived. A case of interest for applications is when the modes of the 

devices are represented by a zeroth-order HMC. A new result regarding the preserva­

tion of the Markov property when the transformation <j) is applied to a zeroth-order 

HMC is given in Section II.3. Section II.4 gives conditions under which the system 

availability process, which is a transformation of an MC, results in another MC. 

Finally, Section II.5 gives a summary of the chapter. 

II.2 THE SYSTEM AVAILABILITY PROCESS 

Consider a particular operation performed by a network of L > 2 devices, and 

assume that each device is affected by L independent upset processes. Let the mode 

of operation at time k G Z+ = {0,1, . . .} of the i-ih device be modeled by a state 

of the HMC Zi(k), i G J?L — {1, • • •, L). For all i G J^i,, the state space of Zi(k) is 

assumed to be the finite set T$ = {0 , . . . , S — 1}, where S > 2. Let (f2, J7, Pr) be the 

ambient probability space over which these processes are defined. In this work, an 

HMC is taken to be a stochastic process satisfying the first-order Markov property 

(see (A.1.1)). The Markov property is trivially satisfied by a zeroth-order HMC. A 

zeroth-order HMC is an independent, identically distributed process, and it will be 

referred to just as an i.i.d. process. A first-order HMC will be referred to here after 

as just an HMC. 

Let z(k) be the joint process of the HMCs Zi(k), i £ J?L. The statistical na­

ture of z(k) is characterized in Lemma II.2.1. Note that the random processes 

Zi(k),..., zi,{k) are independent if the random variables at time k are mutually 

independent for every fc€Z+. 
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Lemma II .2.1. Let Zi(k), % G J'L, be a set of independent HMCs with state space 

X$, initial state probability vector 7r2i(0) = [Pr(zj(0) = 0 ) . . . Pr(zj(0) = 5 - 1 ) ] and 

transition probability matrix HZi. Then the joint process z(k) is an HMC with state 

space Xo = Xs x • • • x ^s, initial state probability vector 

^(0) = 

L times 

L 

n P r K ( 0 ) = 0 ) , . . . > n P r K ( 0 ) = S - l ) 
.i=l i=l 

= T z 1 ( 0 ) ® - - - ® 7 T Z L ( 0 ) , 

(IL2.1) 

and transition probability matrix 

n 2 = n 2 1 ® - - - < g > n 2 L , 

where ® is the Kronecker product. The joint process z{k) is irreducible and aperiodic 

if each of the Markov chains Zi(k) satisfies these properties. 

Proof: The initial state probability vector 7r2(0) follows from the independence of the 

HMCs Zi, i £ J'L- The rest of the theorem is a direct generalization of Lemma 7.19 

in [22]. • 

Remark 

Theorem A. 1.2 shows that for a finite-state HMC z(k), ergodicity is equivalent to the 

property of being an aperiodic and irreducible MC. Furthermore, ergodicity is equiv­

alent to the transition probability matrix of z(k) being quasi-positive (see Definition 

A. 1.3). Therefore, if either of these conditions is satisfied then the joint process z(k) 

is ergodic, which implies the existence of a stationary probability vector, TTZ. 

Let V and C be two finite sets such that the cardinality of C is strictly less than 

the cardinality of V. The following definition, based on [19], introduces the notion 

of a lumping transformation. 
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Definition II .2.1. Any onto function 

x i—»• (f){x) — y EC 

is called a lumping transformation. 

The lumping transformation 4> amalgamates elements from V to associate them 

with elements in C, thereby reducing the cardinality of the domain V. When applying 

a lumping transformation to a finite-state MC, Definition II.2.1 becomes 

Definition II.2.2. Let Zi(k), % € Ĵ z,, t>e a set of independent HMCs with state 

space Ts, and let z(h) be the joint HMC. Let Xt = {0, ...,£ — 1} be a finite set such 

that 1 < £ < SL. Any onto, memoryless function 

(/>: ls —>le 

z(k)^4>{z(k))=jele 

is called a (MC) lumping transformation. 

Since 4> is measurable, observe that <f>(z(k) is a well defined random variable for 

each k G Z+ . When S = £ — 2, the mapping 0 is called a structure function [3, p. 

2]. A (MC) lumping transformation will be called from now on just a lumping 

transformation. Lumping transformations have been extensively studied since the 

1950's (see [5,19,23,44,45]) with the purpose to establish conditions under which the 

Markov property of z(k) is preserved after the lumping transformation. Conditions 

under which the lumping transformation results in an HMC for every initial state 

probability vector 7r2(0) and a simple test for checking it are presented in Section 

II.4. 
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Clearly, a lumping transformation is a measurable mapping. Thus, for each k £ 

Z+ the function <p induces a random variable defined by p(k) = <f>(z(k)), and having 

range Xe. Since the process {p(k) k € Z+} is not necessarily an MC (see, e.g., [19], 

[23]), in general it is called a lumped process. The process p(k) characterizes the 

network architecture according to the following definition. 

Definition II.2.3. Let Zi(k), i G J?L, be a set of independent HMCs with state 

space Is, and let z(k) be the joint HMC. Let Xt = {0, ...,£ — 1} be a finite set such 

that 1 < £ < SL. The lumped process 

p(k) = </>(z{k))=j€le 

is called the (induced) system availability process. 

The system availability process indicates at each time instant the operational 

mode of the network architecture. For example, the event {p(k) = 0} is identified 

with the correct functioning of the network at the fc-th sample period. 

The onto and lumpability properties of the function 0 make it possible to partition 

the state space of z(k) as follows: 

e-i 

xL
s = {ji3, (n.2.2) 

3=0 

where for each j € Xg, Ij = 4>~x{j) = {( £ I f : 0(C) = j}- This partition is 

used in this dissertation to derive all the results regarding the system availability 

process p[k). In this section, a statistical characterization of p(k) is given. First, the 

state probability^ vector and the availability of the system at steady-state are given 

in Lemma II.2.2 and Theorem II.2.1, respectively. Second, the one-step transition 

probabilities and their steady-state values are given in Theorems II.2.2 and II.2.3, 
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respectively. Observe that all these results are general in the sense that they are 

independent of whether or not the process p(k) is an MC. 

In [19], the joint distribution Pr(p(k) — jk,- • • , p(0) = jo) is given in terms of a 

matrix called a lumping projector matrix. In particular, this result can be used to 

calculate Pr(p(fc) = j). However, is more natural to provide a formula that calculates 

this probability in terms of what is assumed to be known. The following theorem 

gives the state probability vector of the system availability process p(k) in terms 

of the transition probability matrix and the initial state probability vector of the 

underlying HMC z(k). 

Lemma II.2.2. Let Zi(k), i £ J2^, be a set of independent HMCs with state space 

X$, initial state probability vector 7rZi(0) and transition probability matrix YiZi, and 

let z(k) be the joint HMC. Let 4> be a lumping transformation and p(k) = 4>(z(k)), 

the system availability process with state space X?. Then the state probability vector 

of p{k), np{k) = [Pr(p(k) = 0) . . . Pr(p(A;) = £ — 1)], is characterized by 

liti=0} 

, jele, (II.2.3) 

where 1{.} is the indicator function of the event {•}, and Q is the i-th component of 

the state £. 

Proof: Since 0 is a measurable mapping, for each j £ Xg it follows that 

Pv(p(k) = j) = Y, Pr(*(*0 = 0- (H.2.4) 



16 

From the assumption that the processes Zi(k) are independent HMCs, the following 

equalities hold 

L 

L 

EII^W 
Ceij i=i 

!{Ci=o} 

_l{Ci=S-l}_ 

Since Zi(k), i G J?L, is an HMC, it follows that 

1 {0=0} 

{<i=S-l} 

* - l 

Finally, the partition in (II.2.2) and (II.2.4) show that £ Pr(p(fc) = j) = 1. • 
j=o 

The following definition, based on [35], is related with the correct functioning of 

the network. 

Definition II.2.4. The probability Pr(p(fc) = 0) is called the (point) availability 

of the network, and lim Pr(p(fc) = 0) is called the availability of the system at 
k—»oo 

steady-state. 

According to this definition, availability indicates how likely it is that the network 

is working correctly at the specific time k. The steady-state availability indicates the 

same, but considers it in the long term. The availability of an HMC and an NHMC, 

which are not induced from a lumping transformation, is addressed in [34, 35]. As 

indicated in Section II. 1, this availability is defined as the probability of the MC 
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to stay in the set of Up states at time k. Lemma II.2.2 above gives a formula for 

the probability distribution of the system availability process. In particular, this 

formula gives the availability of the network (when j = 0). The availability of the 

system at steady-state, which in [34] is called the asymptotic availability, is derived 

in Theorem II.2.1 and shown to be constant under the additional assumption that 

the independent HMCs Zi(k), i £ J^ , are ergodic. 

Theorem II.2.1. Let Zi(k), i £ J?L, be a set of independent ergodic HMCs with state 

space Is o,nd stationary probability vector nZi, and let z(k) be the joint EMC. Let <f> 

be a lumping transformation and p(k) = 4>(z(k)), the system availability process with 

state space X^. Then the availability of the system at steady-state is 

^Pr(p(k) = 0) = J2U^ 

1{Ci=o} 

l{Ci=s- i} 

(II.2.5) 

Proof: Under the given assumptions, the limit exists since lim 7rZj(0)II^. = nZi. 
k—»oo ' 

Equation (II.2.5) follows directly from (II.2.3). • 

The following results give one-step transition probabilities of p(k) and the steady-

state value of these transition probabilities. To simplify the presentation, the SL 

possible states of z(k), labeled in their natural last-lexical order [44], are assigned 

values in £ = {1,2, . . . ,SL}. Let £ : 1$ —>• £ denote the bijective function that 

maps a state to an integer label in £, such as, £((0,0,. . . , 0)) = 1 and £((5 — 1,5 — 

1, . . . , 5 — 1)) = SL. Thus, 4> induces through £ the partition: 

€ - 1 

S = \JSj, (11.2.6) 
3=0 
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where £j = {/ G 8 : I = £(C), C £ / , } , and /,• belongs to the partition defined in 

(II.2.2). Observe that there is a one-to-one relationship between the set of labels 

£j and the set of states Ij. The SL x I matrix M defined below characterizes this 

partition, and it is useful in the analysis of the lumping operation. (In [45] a similar 

matrix is defined and it is called a lumping matrix.) 

Definition II.2.5. Let M = [m^] be a matrix of dimension SL x £ such that for 

j G Te and i £ £, rriij is defined as follows: 

1 : whenever 0(£_1(z)) = j , 
mij = < 

0 : otherwise. 

The matrix M will be called lumping matrix, and its columns will be denoted se­

quentially from left to right as M 0 , . . . , Me-\. 

The following lemma gives conditions under which the probability of the system 

to stay in any mode is positive. Moreover, the lemma gives another formula for 

calculating the probability distribution of the lumped process p(k) in terms of the 

lumping matrix M and the state probability vector of the joint HMC z[k). 

Lemma II.2.3. Let Zi(k), i € J?L, be a set of independent HMCs with state space Is 

and state probability vector nZi(k). Let z{k) be the joint HMC with state probability 

vector irz(k), and let p{k) = <j>(z(k)) be the system availability process. If for each 

i G J^L and all k G Z +
; nZi(k) has positive entries, then Pr(p(fc) = i) > 0, i G X^, 

and 

Pr(p(fc) = i) = irz(k)Mi. 

Proof: Since Zi(k), i G J^L, are independent, Equation (II.2.1) holds for any sam­

ple period k > 0. Therefore, the assumptions of the lemma imply that the state 
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probability vector 7rz(k) has positive entries for any k. Now 

Pr(p(A;) = i) = Pr(z(fc) G U m € £ i { r V ) » 

= Pr(«(fc)€Um 6 f t{r1(m)}) 

= X)P'(*(*) = r1(m)) 
m££i 

= £ Pr(z(fc) = T V)) 

= nz(k)Mi 

Since each column of the lumping matrix M has at least one entry different from 

zero, then Pr(p(fc) = i) = 7r2(A;)Mi > 0. • 

The following theorem gives the one-step transition probabilities of the process 

p{k). 

Theorem II.2.2. Let Zi(k), i G Ĵ x,, be a set of independent HMCs with state space 

Xs, and let z(k) be the joint EMC z(k) with transition probability matrix Uz = [p^n], 

m,n G £ and initial state probability vector 7r2(0). Let <p be a lumping transformation 

and p{k) = (f>(z(k)), the system availability process. If for each i G J2/, and all 

k G Z +
; irZi(k) has positive entries, then the one-step transition probabilities of p(k), 

Pij(k) = Pr(p(fc + 1) = j\p(k) — i), are well-defined and given by 

Pij{k) = 7r,(0)n,fcM< ̂  ^ W f e ' ^ ' G J^' ( I L 2 - ? ) 

where em G R s is f/ie vector of zeros with a single 1 m £/ie m-th position. 

Proof: By Lemma II.2.3 and since 0 is a lumping transformation, it follows that 
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Pij(k) = Pr(p(k + l) = j \ p{k) =i) 

= Pr(z(k + 1) e Un€£j{r\n)} | z(k) e Um&£i{C\rn)}) 

= Pr(z(fc + 1) € Unef.U"1 (n)} n z(fc) € I W ^ M } ) 

P r ( z ( f c )GU m 6 5 i {r 1 M}) 

E E Pr(z(fc+1} = ^WW*) = ^i™)) Pr(2^) = r 'H) ) 
\.n&£j msSi J 

E E # n n P r ( z ( f c ) = r V ) ) 

E E^™™ )̂6™ 

E E Pmn (̂0)IÎ m 

nz(0)Uk
zMi 

Observe that the one-step transition probabilities p%j{k) are given in terms of the 

transition probabilities of the joint process z(k), which are assumed to be known. 

The steady-state values of these transition probabilities are given in the following 

theorem. 

Theorem II.2.3. Let Zi(k), i e J't,, be a set of independent, ergodic HMCs with state 

space Is and let z{k) be the joint HMC with transition probability matrix YLZ = [p^J, 

m,n £ £ and stationary probability vector nz. Let <p be a lumping transformation and 
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p(k) = <fi(z(k)), the system availability process with state space X^. Then the steady-

state values of the transition probabilities PiAk), p^ = lim PiAk), are 
k—>oo 

Pij = lim pi:i{k) = —— Y^ Yl Pzmn*zern, i, j G It- (II.2.8) 
fc—>oo 7TziWj 

n€£j m£ti 

Proof: Since each HMC Zj, i <G J^L, is ergodic, then by Lemma II.2.1 the joint 

process z(k) is also ergodic and its stationary probability vector, irz, has positive 

components. Thus, for k big enough it follows that FÎ  = lirz, where 1 € Ms is a 

vector with ones in each entry. Now, for k big enough it follows that Pr(p(&) = i) = 

7rz(0)n^Mj = 7r2(0)l7rzMj = TvzMi, which is positive because 0 is an onto mapping 

implying that the columns Mi, i 6 l { , have at least one entry equal to 1. Then the 

claim follows directly by taking limits in (II.2.7). • 

From Theorem II.2.2, it is clear that the one-step transition probability matrix 

np(fc) = [py(fc)j is a stochastic matrix. Theorem II.2.3 says that the matrix Hp(k) 

converges point-wise to a constant stochastic matrix II = [pj •], where p^ is given in 

(II.2.8). 

The 2-state Case 

The case when each device and the network only have two operational modes, 

that is when 5 = £ = 2, is of particular interest for applications (see, e.g., [18] and 

Chapter III). In this case the diagonal entries of the 2 x 2 transition probability 

matrix Tip(k) become 

Poo{k) = « (0)n*M0 ^ P'^M^em (IL2.9) 
z m,n&£o 

and 

Pn{k) = KM^M S ^ ( ° ) n ^ . (IL2-10) 
z m,ne£i 
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where pu(k) = Pr(p(fc + 1) = i\p(k) = i), % G T2. 

For the 2 x 2 state case, the following steady-state result is obtained. 

Corollary II.2.1. Let Zi(k), i G J?L, be independent, ergodic HMCs with state space 

X2 and let z{k) be the joint HMC with transition probability matrix Yiz = [p^,n], m,n G 

{1,2}, and stationarity probability vector TTZ. Let cf> be a lumping transformation and 

p(k) = 4>(z(k)) the system availability process with state space T2. Then the steady-

state values of the transition probabilities Poo(k) and Pn(k) are: 

Poo=limpn(A;) = — — V pz
mnirzem 

fc^oo KZM0 *—?p 

m,nGto 

and 

pn = lim p22(k) = —— V pz
mnnzem . 

fc—>oo 7VzMi *•—' 
m,n€ii 

Proof: This follows from Theorem II.2.3 by taking limits in (II.2.9) and (II.2.10), 

respectively. • 

This result will be used, in particular, in the proof of Theorem III.5.1, where a 

test for checking MSES is given. 

II.3 TRANSFORMATIONS OF I.I.D. PROCESSES 

In this section, a useful result for applications is given, where the network com­

ponents are characterized by i.i.d. processes (see Example III.4.1). The following 

lemma is a direct consequence of Lemma II.2.1. It is used to prove Theorem II.3.1, 

which is the main result of this section. 

Lemma II .3.1. Let Zi(k), i G ^L, be independent i.i.d. processes with state space 

Is and state probability vector ivZi. Then the joint process z(k) = (zi(k),..., zL(k)) 
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is i.i.d. with state space T$ = X5 x • • • x 1$ art>d ^s state probability vector is nz = 
L times 

nZl <g> • • • <g> irZL. 

Proof: This is a special case of Lemma II.2.1. • 

Theorem II.3.1 below shows that a lumping transformation does preserve the 

zeroth-order Markov property when applied to an i.i.d. process. This theorem also 

characterizes the distribution of p(k). 

Theorem II.3.1. Let Zi(k) be a set of independent i.i.d. processes, i G J?L, with state 

probability vector irZi and common state space Is- Let <fi be a lumping transformation 

and p(k) = 4>{z{k)) the system availability process. Then p(k) is an i.i.d. process, 

and its probability distribution is 

l{d=oy 
L 

pT{P(k)=j} = j2U^ ,jele. (H.3.1) 

_1{0=5-1}_ 

Proof: Since the joint process z(k) is i.i.d., the sigma algebras generated by the HMC 

z(k), a({z(k)}), and k G Z+ are independent. Thus, the claim follows immediately 

from the fact that 0 is a memoryless measurable function implying that a({p(k)}) — 

a({z(k)}). Equation (II.3.1) follows from Lemma II.2.2 for the i.i.d. case. • 

II.4 HMC CONDITIONS 

Strong lumpability is the name given to the property under which a transforma­

tion of a finite-state HMC results in another reduced finite-state HMC for any initial 

state probability vector of the underlying process (see Appendix A). A result that 

gives sufficient conditions for a transformation of an HMC to be an HMC was given 
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by Kemeny and Snell in 1960 [23]. Theorem II.4.1 below reformulates these condi­

tions for the lumped process p(k). The statement of the theorem follows the notation 

given in [37]. Let V be the partition determined by the lumping transformation <fi 

on Z | , that is, V = { J 0 , . . . , i *_ i} (see (II.2.2)). Denote by Pr(m,7 r ) , r e l t the 

probability of moving from the state £ of z(k), labeled by m G £, to the set Ir G V, 

that is, P r ( m , / r ) = ^pz
mn. 

n€lT 

Theorem II.4.1. Let Zi(k), i G J?L, be a set of independent HMCs with state 

space Is Q-nd let z{k) be the joint HMC. Let <fi be a lumping transformation and 

p(k) = (f>(z(k)), the system availability process with state space X^. Then the process 

p(k) is an HMC for every initial state probability vector nz(Q) if and only if for every 

pair of sets Ir and It in V, the probability Pr(m, It) has the same value for any m 

in Ir. This common value is the one-step transition probability corresponding the 

process p(k) of moving from the set Ir into the set It. 

Proof: It is a direct application of Kemeny-Snell's Theorem 6.3.2 in [23, p. 124]. • 

The next result shows that p{k) can be an NHMC only for some but not all initial 

state probability vectors. 

Lemma II .4 .1 . Let Zi(k), i G J?L, be independent HMCs with state space 1-s and let 

z(k) be the joint HMC with initial state probability vector 7rz(0). Let 4> be a lumping 

transformation and p(k) = cj)(z(k)) the system availability process with state space 

le- If the process p(k) is an MC for all 7rz(0) then it is an HMC. 

Proof: This follows directly from [19, pp. 105-106]. • 

By adding the ergodicity property to the HMCs zi} i G J ^ , hi the Lemma II.4.1, 
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one can obtain the following result. 

Theorem II.4.2. Let Zi(k), i G J^L, be a set of independent, ergodic HMCs. Let 

z(k) be the joint HMC with initial state probability vector 7rz(0). Let 4> be a lumping 

transformation and p(k) = <f>{z{k)) the system availability process with state space 

Xi. If the process p(k) is an MC for all 7rz(0) then it is an ergodic HMC. 

Proof: It follows from Lemma II.4.1 that p(k) is an HMC. The ergodicity of p(k) 

follows from Lemma II.2.1. • 

Lemma II.4.2 below gives necessary and sufficient conditions under which a 2-

state lumped process p(k) = <f>(z(k)) will be an HMC for all initial state probability 

vectors ^ ( 0 ) . It is a reformulation, in terms of the lumpability matrix given in 

Definition II.2.5, of Theorem II.4.1. The result is similar, but not exactly equal to 

Lemma 1 given in [45]. Moreover, it is easier to apply, since it does not require 

relabeling of the states. 

Lemma II.4.2. Let Zi(k), i G ^L, be a set of independent HMCs with state space 

X2 and let z(k) be the joint HMC with transition probability matrix Ylz. Let 0 be a 

lumping transformation and p{k) = (j>(z(k)) the system availability process with state 

space X2. Then the process p{k) is an HMC for every initial state probability vector 

7r2(0) if and only if there exists constants [i\ and //2 in [0,1] satisfying 

UmMi = l — / j 0 V m E £0 and UmM0 = 1 — Hi V m G £\, 

where U.m is the m-th row of Hz. Furthermore, the transition probability matrix of 

p(k) is Up = M i-fJ-0 
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Proof: The set of labels £0 and S\ correspond to the set of states I0 and I\, re­

spectively, in the partition V = {Io,Ii} induced by the structure function 4>. The 

claim follows directly from Theorem II.4.1 by observing that Pr(m, Ji) = IImMi = 

1 — Ho V m G So and Pr(m, I0) = n m M 0 = 1 — //i V m e £x. • 

The following is an example of a parallel interconnection known as l-out-of-2, 

that is, the interconnection is considered to be working correctly if a least 1 of the 

devices is working. 

Example II .4.1. Consider an interconnection of L = 2 devices with upset processes 

given by an HMC with transition probability matrices 

Pn Pn 

P21 P22 

and initial state probability vector nZi(0), % — 1, 2. If the system availability process 

is given by the process p(k) denned in Table I, then the state space of z(k) is 

partitioned as If = I0\Jh, where I0 = {(0,0), (0,1), (1,0)} and Ix = {(1,1)}. 

The lumping matrix is 

1 0 

1 0 

IT 

M = 
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TABLE 
zi(k) 

0 
0 
1 
1 

I: Transformation table : 
z2(k) 

0 
1 
0 
1 

z(k) 

(0,0) 
(0,1) 
(i.o) 
(1,1) 

£(*(*)) 
1 
2 
3 
4 

"or Example 11.4.! 
P(k) = 4>(z(k)) 

0 
0 
0 
1 

By Lemma II.2.2 the probability that the network is working correctly is 

Pr(p(£:) = 0) = 7rzi(0)n 
z\ 

7rZ2(o)n 
2 2 

+ 7^(0)11 
z\ 

7rZ2(o)n 
2 2 

**(o)nJ 

= ^ ( o ) n ^ 

+ 7r2l(0)IT 
*1 

7r22(o)n 
2 2 

( 

I 
1 

0 
+ 

0 

I—
1 

1 

7T22(0)lT 

The stationary probability vector for p(k) exists whenever Z\{k) and z2(k) are er-

godic. Let the stationary probability vectors of these processes be nZl = [71̂  n^] 

and nZ2 = [nl2 7r^2], respectively. From Theorem II.2.1 it follows that 

lim Pr(p(fc) = 0) = TT2I 

fc—»oo 

1 

0 
7I"z2 

1 

1—
1 

1 

+ 7TZ1 

0 

1 
Kz2 

r 
- 

'•••• 
1—

1 

0 

= 7T 

r -i 

1 

0 
+ 7T2l 

r -| 

0 

1 
7Tz2 

r -i 

1 

0 
z\ 

7]-1 _|_ Tj-2
 T,-1 

"21 ~ " 2 ! / lZ2 

= 1 - < ( ! - < ) • 

To calculate the one-step transition probabilities poo{k) and pu(k) given by (II.2.9) 

and (II.2.10), respectively, observe first that (f> partitions the set of labels introduced 
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in (II.2.6) as E = £o(J£i' where £0 = {1> 2, 3} and £x = {4}. Thus, 

Po0^ = TT (0)UkM ( ^ + P*2 + ^ 3 ^ e i + ^ + ^ + p 2 3 ) e 2 + 

(P3i+P32+P33)e3J7rz(0)n^ 

and 

Pn{k) = -7^mnr rP44^ (0 )n fc 
z ' 7rz(o)n*Mi 

where M0 = [1 1 1 0]T and Mx = [0 0 0 l ] r . 

Lemma II.4.2 is used to determine the conditions for p(k) = 4>(z(k)) to be an 

HMC. The process p(k) = 4>{z(k)) will be an HMC if and only if the following 

equalities are satisfied: 

III Mi = l - ^ 0 = P l 2 X P l 2 

n2Mi = 1 - no = p{2 x p\2 

n3Mi = l - / x 0 = ^ 2 xp?2. 

Lemma II.4.2 gives a fourth equation, II4M0 = 1 — H\ = 1 — p\2
 x P22' which is not 

needed since it is dependent on the first three equations. These relations imply that 

1 2 1 2 1 2 
Pl2 X Pl2 = Pl2 X P22 = P22 X Pl2-

If these equalities do not hold, then p(k) will not be an HMC for all initial state 

probability vectors 7rz(0). By Lemma II.4.1, however, p(k) could be an NHMC for 

some but not all 7rz(0). Whenever the stationary probability vector for z(k) exists 

then as k —> 00, p(k) is characterized by a constant transition probability matrix as 

shown in Corollary II.2.1. Assume the 2-state HMCs zi(fc) and z2(k) have transition 
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probability matrices HZ1 and UZ2 with positive entries. Then, the necessary and 

sufficient conditions for p(k) to be an HMC are 

P12 = P22 a n d P12 = P22-

In this case, II21 and HZ2 have the form 

-
a 1 — a 

a 1 — a 
n = 

6 

b 

-
1 - 6 

1-b 

where a = 1 — pj2
 a n d 6 = 1 — p\2 with a, 6 G]0, 1[. If the initial state probability 

vectors are 7rZl(0) = [a 1 — a] and 7r22(0) = [6 1 — 6], then the processes Z\{k) and 

22(&) with transition probability matrices given in (II.4.1) are i.i.d. processes. Since 

Ho = 1 — Hu t n e n n p has equal rows, and 7rp(0) = [/io 1 — A*o]- Thus, p(fc) is an i.i.d 

process for k > 1. 

This example shows, in particular, that for the 2-state MCs Zi(k) and z2(k) with 

positive entries in their transition probabilities, the 2-state lumped process p(k) = 

4>(z(k)), where <\> is the l-out-of-2 structure function, can not be an HMC for all 

7rzi(0) and 71-^(0). D 

II.5 SUMMARY 

In this chapter, the concepts of a lumping transformation, 0, and the system 

availability process induced by 0, p(k) — <f>(z(k)), have been introduced formally. A 

statistical characterization of this process was given. In particular, its state prob­

ability vector was derived and conditions were given under which it is an ergodic 

HMC. Furthermore, it was established that the process p(k) has well-defined one-

step transition probabilities. These transition probabilities and their steady-state 
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values were computed. Conditions under which a transformation of a zeroth-order 

HMC result in a zeroth order HMC were also given. In addition, a reformulation of 

Kemeny-Snell's Theorem 6.3.2 in [23], that uses the concept of lumping matrix, was 

used to check when the system availability process results in an HMC. Finally, an 

example was presented to demonstrate some of the results obtained in this chapter. 
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CHAPTER III 

DISCRETE-TIME JUMP LINEAR SYSTEMS DRIVEN 

BY LUMPED PROCESSES 

III.l INTRODUCTION 

This chapter analyzes the MSS and the output performance metrics of a JLS 

driven by a lumped process. The JLS represents the closed-loop control system 

dynamics and a network architecture comprised of L > 2 devices. It is assumed that 

each device forming the system is in one of a finite number of modes of operation. 

Each operational mode is identified with a state of either an i.i.d. finite state process 

or an HMC. In particular, suppose that a harsh environment randomly switches each 

device's mode of operation in the set T$ such that the mode of operation of the 

i-th device at time A; is represented by a state of the MC process Zi(k). From the 

point of view of the closed-loop control system, it is important to characterize the 

modes of operation of the fault-tolerant network since they determine the closed-

loop system's modes. The network's modes at time k are characterized by a state 

of the lumped process p{k) = 4>(z(k)), where <f> is a lumping transformation, and 

z(k) is the joint MC z(k) = (z1(k),..., ziik)). It is assumed that p[k) drives 

the JLS taking values in the set X ,̂ thereby switching the modes of the closed-loop 

control system. It is known that the process p(k) might not be an MC [19]. In 

this chapter, a class of networks that result in p(k) being either an i.i.d. process or 

an HMC or a lumped NHMC or an NMC is characterized. New results concerning 
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the MSS and the performance analysis are given when p{k) is not an HMC. Most 

of the JLS literature has addressed the case where p(k) is an HMC that is not the 

result of a lumping transformation (see, e.g., [8,11,14,46]). Some of these papers and 

others have presented results for i.i.d. switching processes (see, e.g., [8,10,11,20,27] 

and their references). Since an i.i.d. process also satisfies the first order Markov 

property, all the known results would apply in this case. However, simpler formulas 

can be derived that do not trivially follow from the known Markov results. This 

has been commented on, e.g., [10,11] regarding stability criterion for an i.i.d. JLS. 

In particular, the performance of a JLS driven by an i.i.d. process has been defined 

and addressed in [27]. In Section III.3, the output performance metrics based in [8] 

and [17] are defined and new formulas are derived for these metrics. The analysis 

of MSS when p{k) is either a lumped NHMC or an NMC has not been addressed 

before. In [11], a test for MSES of a JLS driven by a non-lumped NHMC has been 

given. A relatively recent publication by Dragan and Morozan, [9], analyzes different 

types of MSESs of a JLS driven by either an HMC or an NHMC that are not lumped 

processes. One of the objectives of this chapter is to give analytical tools to analyze 

the MSS of a JLS driven by either a lumped NHMC or an NMC. 

The rest of the chapter is organized as follows. A brief review of the HMC results 

is done in Section III.2. Next, in Section III.3, a JLS driven by the process p(k) when 

it is i.i.d. is addressed. New analytic expressions for the output performance metrics, 

including their sensitivity analysis, are also given. In Section III.4, an example is 

given to demonstrate the results derived in Section III.3. The case when the process 

p(k) is either a lumped NHMC or an NMC is addressed in Section III.5. Finally, a 

summary of the chapter is given in Section III.6. 
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III.2 PRELIMINARIES 

A brief review, based on [17] and [39], of the MSS and the output performance 

metrics of a JLS driven by an HMC is given in this section. Let S2 represent the set 

of all initial state probability vectors 7rz(0), and $ z be a proper subset of Ez. Let <f> 

be a lumping transformation and p(k) = 4>(z(k)) a lumped process with state space 

Te- Consider the JLS driven by p(k): 

x{k + 1) = Ap{k)x{k) + Bp{k)w{k), x(0) = x0, (III.2.1a) 

y(k) = Cp{k)x(k), (III.2.1b) 

where x(k) G W1, y(k) G Mp, x0 is a second-order random vector, and w(k) G K9 

is a zero mean, second-order, wide sense, stationary process with identity covariance 

matrix Iq and independent of p(k) and x0- Assume that p{k) is an ergodic HMC 

for all 7r2(0) G 5Z with transition probability matrix Yip and state probability vector 

irp(k) = [Pr(p(A;) = 0 ) . . . Pr(p(fc) = £ - 1)]. Let Ep be the set of all initial state 

probability vectors of p(k). A standard MSS definition for the HMC JLS (III.2.1) 

follows [39]. 

Definition III.2.1. The HMC JLS (III.2.1) is MSS if there exists a non-negative 

constant a such that for any initial state probability vector np(0) G Sp and any initial 

condition sc(0) = x0 with finite second moment, it follows that lim ^{||x(fc)||2} = a. 
fc—>oo 

If w(k) = 0 for k G Z+ then a = 0. 

Remarks 

1. It is reported in [39] that according to [8] and [12], the condition of ergodic-

ity for p(k) is needed in Definition III.2.1 to ensure the uniqueness of the limit 
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lim E{||x(fc)||2} = a when w(k) ^ 0. On the other hand, when w(k) — 0, this 
fc—>oo 

condition is not needed. 

2. For each k e Z+ define Q(k) = E{x(k)xT(k)}. When w(k) = 0, it is known 

that lim £{||a:(A;)||2} = 0 is equivalent to lim Q(k) = 0 [31]. For w(k) ^ 0, MSS is 
k—>oo k—>oo 

defined in [7,8] similarly by requiring the existence of a positive semi-definite matrix 

Q (independent of x(0) and 7rp(0)) such that lim Q(k) = Q. This condition will be 
k—>oo 

used here. 

3. In [10,11], MSS and other types of stability are defined with respect to $p , that 

is, a restricted set of initial state probability vectors 7rp(0). 
A test for MSS is given next. 

Lemma III.2.1. The HMC JLS fill.2.1) is MSS if and only if the spectral radius 

of A2 is less than 1, where 

A2 = diag(y# ® J§,..., Aj_x <g> Aj_x)(np <g> Jna). (III.2.2) 

Proof: See [7]. • 

The analysis of the output performance metrics of the HMC JLS (III.2.1) sum­

marized below is extensively developed in [17] and [46]. The output performance is 

defined as follows: 

J 
Jw ± lim E{\\y(k)\\'} , w(k)^0 

k—»oo 

Jo ± Etf^Wym2} , t»(fc) = 0, 
k=0 

where Jw is called the steady-state mean output power and Jo the mean output 

energy. When the system is MSS, analytic expressions for Jw and J0 exist. These 
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expressions are given in terms of the following matrix: 

Q = V-1({len>-A2)-ip(C)\ (HI.2.3) 

where A2 is defined in (III.2.2) and C = [CQC0, •••,Cj_1Ce^i\. The function ip is 

defined as 

<p(Q) ± [vecr(Q0) vecT(Q1) • • • vecT(Q,_1)]T e Ren", 

where "vec" denotes the column stacking operator and, since (l(n2 — A2)-ip{C) is a 

square matrix, <prx yields the contrary effect than ip. The matrix Qi, i = 0,..., £ — 1 

is comprised of the column vectors <&_,• G M.n, j = 1, ...,n, that is, Qi = [qn q^ ••• %n]-

Since the HMC p(A;) is ergodic, it has a stationary probability vector (see Theorem 

A.1.3). Denote it by irp = [TT°, ....TTJ"1]. When the JLS (III.2.1) is MSS, it is shown 

in [17] that 

Jw = tv(BwQw), (III.2.4) 

and 

Jo = tr(X°Q°), (III.2.5) 
e-i £-1 

where Bw 4 B 5 T , Qw = ^ Q i i r J > X ° = £ { ^ 0 } and Q° = J^(Q iPr(p(0) = i)). 
i=0 i=0 

The following section addresses the MSS and the performance analysis of the JLS 

(III.2.1) when the process p(k) is i.i.d. Simpler formulas are derived for Jw and J0 

that do not trivially follow from (III.2.4) and (III.2.5). 

III.3 JLS DRIVEN BY I.I.D. PROCESSES 

Analysis of MSS 

The results derived in this section hold for any i.i.d. process p(k) that drives the 

JLS (III.2.1) including the case when p(k) is the result of a lumping transformation. 
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Recall that in Section II.3, conditions under which the process p{k) = <j>(z(k)) is an 

i.i.d. process were given. In what follows, the i.i.d. process p{k) is assumed to have 

states in the set Ti such that for i G Te, pi = Pr(p(fc) = i). The MSS definition 

applied to the i.i.d. case is given next. 

Definition III .3 .1 . The i.i.d. JLS (III.2.1) is MSS if there exists a non-negative 

constant a such that for any initial condition x(0) = x0 with finite second moment, 

it follows that lim £{||cc(A;)||2} = a. If w(k) = 0 for k € Z+ then a = 0. 
k—>oo 

When p(k) is an i.i.d. process, then Pr(p(0) = i) — Pr(p(fc) = i) for all k > 1. 

Therefore, the expression for "all initial state probability vectors" has been removed 

from Definition III.2.1. Moreover, due to the remark given after Definition III.2.1, 

Definition III.3.1 is equivalent to the existence of a positive semi-definite matrix Q 

(independent of x(0) and 7^(0)) such that lim Q(k) — Q. 
k—>oo 

A test for MSS is given next. 

Lemma III .3.1. The i.i.d. JLS ^111.2.1^ is MSS if and only if the spectral radius of 

A is less than 1, where 

A ^ ^ A i ® A ^ - (III.3.1) 
i=0 

Proof: See [10]. • 

The matrix A in (III.3.1) has dimension n2 x n2. The i.i.d. process p(k) can be 

represented by the £ x £ transition probability matrix 

Po ••• Pe-i 

Po ••• Pi-i 

n = 
Up — 
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In this case, the matrix Ai defined in (III.2.2) has dimension £n2x£n2. Therefore, the 

corresponding MSS test for (III.2.1) would require the computation of the spectral 

radius of a matrix with dimension in2 x £n2. The lower dimension of A in (III.3.1) 

is one benefit of working with an i.i.d. JLS in Lemma III.3.1 as opposed to an MSS 

stability test for an HMC JLS. An additional benefit is that an equivalent MSS test 

for an HMC JLS requires solving a set of coupled algebraic generalized Lyapunov 

equations [8, Theorem 3.9]. For the i.i.d. JLS only one algebraic generalized Lyapunov 

equation needs to be solved [8, Corollary 3.26], [11]. 

Two useful properties of the i.i.d. JLS are introduced in Lemma III.3.2. Let 

Tk — &({p(k)}) denote the c-algebra generated by p(fc), fc€Z+. 

Lemma III.3.2. Suppose the JLS (111.2.1) is driven by the i.i.d. process p(k). Then 

x(k) and l{p(fc)=i} are independent for all % G It and k > 1. In addition, for each 

k € Z+ the random variables x(k) and w(k) are independent. 

Proof: From (III.2.la) it follows that x(k) is ^-x-measurable for k > 1. Since 

l{p(fc)=i} is ^-measurable for all i G Xf, the claim follows because p(k) is an i.i.d. 

process implying that the cr-algebras J-"k-i and T^ are independent. The indepen­

dence between a; (A;) and w(k) follows from the assumption that w(k) is independent 

oi p(k). m 

Lemma III.3.3. If the i.i.d. JLS (III.2.1) is MSS then Q satisfies 

e-i e-i 

Q = J2 W^Pi + E B*BTpi- ( I IL3-2) 
i=0 2=0 

and 

Q = vec"1 ((In2 - A)'1 vec (£)) , (III.3.3) 
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where A is defined in (III.3.1) and 

e-i 
B = YJBiBjPi. (III.3.4) 

i=0 

Proof: Since x(k) and w(k) are independent, and w(k) is zero mean with identity 

covariance, it follows that 

E{x{k)xT(k)} = E{ (Ap{k_1)X(k - 1) + Bp{k_1)W(k - 1)). 

(AP(A:_I)X(A; - 1) + Bp^-^wik - 1)) } 

= £ { , V - i ) ^ - 1)*T(A; - l)^ ( f c_D} + 

E{Bp{k_1)W(k - l)wT(k - l)Bj(fc_1}} 

= E^Aixik - l)xT(fc - l)^l{p(fc-i)=i} j + 
»• 5 = 0 J i=0 

• £ - 1 

i=0 

Using Lemma III.3.2 yields 

- 1 .. £-1 

{ £ — 1 x £ —± 

^ ^ a ; ( f c - l)xT(k - l)Aj L + ^ Bififpi. 
i=0 ^ i=0 

MSS of the i.i.d. JLS (III.2.1) makes it possible to take limits as k —• oo on both 

sides of this equation resulting in (III.3.2). Finally, (III.3.3) follows from (III.3.2). • 

Derivation of Jw and J0 

To characterize the output performance metrics of the i.i.d. JLS (III.2.1), analytic 

expressions are derived. These expressions have been given in (III.2.4) and (III.2.5), 

based on [17] when the lumped process p(k) is an HMC. Since an i.i.d. process 

is an HMC of order zero, the results in [17] can also be used when p(k) is i.i.d.; 
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however, new simpler and lower dimensional formulas are derived here. The output 

performance metrics for the JLS (III.2.1) are redefined as follows: 

Jw ± lim E{\\y(k)\\2} , w(k)^0 
T , k—+00 

J = < °° 
Jo = ^E{\\y(k)\\2} ,w(k)=0. 

fc=0 

Remark 

In the definition of J0, the order of the sum and the expectation has been changed 

with respect to [17] to match the order given in [8]. 

Theorem III.3.1. If the i.i.d. JLS (III.2.1) is MSS then Jw < 00, and 

e-i 

Jw = Y,tv(CiQCT)Pi> (III.3.5) 
i=0 

where Q is given in (111.3.3). 

Proof: From (III.2.1b) it follows that 

E{\\ y(k) ||2} = E{xT(k)Cj{k)Cp{k)x(k)} 

= E{tr(Cj{k)Cp{k)x(k)xT(k))} 

r e~l 

= El %TY,Cix{k)xT{k)Cf[l{f>{k)=i) 
^ i=0 

By Lemma III.3.2 

E{\\y{k)\\2} = tr\y^CiE{x{k)xT{k)}Cj U . 

Since the JLS (III.2.1) is MSS, taking limits as k —>• 00 on both sides of this equation 

gives (III.3.5). Equation (III.3.3) follows from (III.3.2). • 

k 

For each k £ Z + define M(k) = /J<5(i). When w(k) = 0, the following lemma 
i=0 

gives another equivalent characterization of MSS for the i.i.d. JLS (III.2.1). 
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Lemma III.3.4. The i.i.d. JLS (III.2.1,) with w(k) — 0 is MSS if and only if there 

oo 

exists a positive semi-definite matrix M £ M.nxn such that M = YJ Q(k). 
k=0 

Proof: By Theorem 2 in [15] the following result holds for each k EZ+: 

±-E{\\x(k)\\2} < l l i ^ f c ) * ^ ) } ! ! < E{\\x(k)\\2}. (III.3.6) 
lb 

Suppose that the i.i.d. JLS (III.2.1) is MSS. From the second inequality of (III.3.6) 

it follows that 

| M ( n ) - M ( m ) | | = | | £ ; Q ( 0 
m+l 

= |f>{*(0*T(0} 
m+l 

<J2\\E{x{x)xT(i)}\\ 
m+l 

<J2E{\\x(i)\\2}-
m+l 

Since MSS is equivalent to stochastic stability, that is, V ^ E {||«(fc)||2} < oo [21], 
fc=0 

n 

then the sequence ^^.E{||a:(i)||2} is Cauchy which, due to the inequality above, 

oo 

implies that M(k) is also Cauchy. This proves the convergence of the series 2_)Q(k) 
fc=0 

since the normed space o f n x n matrices is complete. 
oo 

Assume now that the series }^Q(k) is convergent. Then lim Q(k) = 0. There-
•^—' k—>oo 

fc=0 

fore, the first inequality in (III.3.6) implies that lim i?{||cc(£;)||2} = 0, that is, the 
k—>oo 

i.i.d. JLS (III.2.1) is MSS. • 

Let E(x(0)xT(0)) be denoted by X°. The following lemma gives a formula for 

the matrix M. 
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L e m m a I I I . 3 .5 . If the i.i.d. JLS (III.2.1J with w(k) = 0 is MSS then 

e-i 
M = ^2 AiMAjpi + X° (III.3.7) 

i=0 

and 

M = vec-1 ((7n2 - A)-xvec(X0)). (III.3.8) 

Proof: Equation (III.3.7) is derived as follows 

oo 

fc=i 

oo e-i 

= X° + E E AiE{x(k - l)xT(k - l)}A[Pi 
fc=l i=0 

l-\ • oo x 

i=0 ^fc=l ' 
e-i , oo >. 

i=0 

Finally (III.3.8) follows from (III.3.7). • 

T h e o r e m I I I .3 .2 . If the i.i.d. JLS fIII.2.1J with w(k) = 0 is MSS then J0 < oo, 

and 
£-1 

j0 = j2tj:(ciMC?)Pii (IIL3-9) 
i=0 

where M satisfies ^III.3.7J. 

Proof: From (III.2.1b) and Lemmas III.3.2 and III.3.4 it follows that 

OO OO t I— 1 \ 

E^n^)n 2 } = E t r (£c7G£{*(*)*r(*)} )vi 
fc=0 ^ i=Q ' 

, l - \ oo 

= tr I J2 CfCi E E{*{k)xT{k)}p,, 

fc=0 fc=0 V i=0 

z ^ - 1 oo 

j=0 fc=0 



42 

e-i 

i=0 

e-i 

J2tr(aMCf)Pi. 
i=0 

Sensitivity performance analysis 

When the i.i.d. JLS (III.2.1) is MSS, the output performance metrics Jw and J0 

given in (III.3.5) and (III.3.9), respectively, can be seen as the real-valued func­

tions Jw(p) and Jo{p), mapping the mean-square stabilizing subset of [0,1]' = 

[0,1] x • • • x [0,1[ into R, where p = (p0,... ,pt-\) and pj = Pr{p(k) = j}, j G Xt. 

(. times 

In fact, from Theorems III.3.1 and III.3.2 it follows that the performance metrics 

are rational functions of these mean-square stabilizing probabilities. Moreover, the 

following lemma makes possible the evaluation of their partial derivatives. 

Lemma III.3.6. Let p* e [0,1]' be such that the t.i.d. JLS (Ul.2.1) is MSS. Then 

there exist a neighborhood of p* such that for each p in this neighborhood the i.i.d. 

JLS (III.2.1J remains MSS. 

Proof: The result follows because the spectral radius of the matrix A is a continuous 

function of p. • 

The sensitivity of Jw and J0 with respect to pj are defined next. 

Definition III.3.2. Let p* G [0,1]' be such that the i.i.d. JLS (III.2.1) is MSS. 

The sensitivity of Jw and Jo with respect to pj are denoted by Sw(pj) and SQ(J)J), 
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respectively, and are given by 

SwiPj) 

So(p3) 

Pj dJw{p) 

Jwijp) dpj 

Pj dJ0(p) 

P=P* 

P=P* MP) dPj 

Hence, the he sensitivity and the partial derivatives differ by a constant factor. In 

Theorem III. 3.3 below, the partial derivatives of Jw and J0 with respect to pj, j e l f , 

are evaluated at the mean-square stabilizing probability p* = (p^,... ,p}_i) G [0, l}e. 

A less local result is given in Theorem III.3.4, where the intervals over which the 

performance metric is monotonic are characterized for a special case. 

Theorem III.3.3. Let p* G [0,1]' be such that the i.i.d. JLS (Ul.2.1) is MSS and 

let Q* = Q(p*) and M* = M(p*) be the values of Q and M at this point, respectively. 

Then for each j G X^ 

dJw(p) 

dpj 

dJ0(p) 
dPj 

p=p* \ i=0 
-l 

5> (a 

dpj 

dM(p) 

= ( E t r f ^ ^ cApA + triCjQ^Cj), (III.3.10) 
=v* V ,-_n V aPj v=p* / / 

^ K j + t r (C,M*Cj) , (III.3.11) 

where 

dQ{p) 

dpj 

dM{p) 

dpj 

P=P* 

P=P* 

= vec-1 ((/„2 - A)'1 ((Aj ® A3)(In2 - A)'1 vec {B) + vec(£,-Bj))) , 

• ^ ( / ^ -A)~\Aj ® Aj)(Ina - A)-\ec(X0)) vec 

with A and B defined in (lll.Z.l) and (III.3A), respectively. 

Proof: The proof is given only for Jw since the other case is similar. Since Jw is a 

rational function, it is infinitely differentiable at any point where it is well-defined. 

The partial derivatives of Jw and Q follow by direct application of •£- and noting 
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that the trace, vec, and vec -1 are linear transformations. Thus, these transformations 

commute with the partial derivative. • 

To present a less local result, consider the £ = 2 case. Then the i.i.d. JLS 

(III.2.1) has two modes of operation that are selected by p(k). The probability 

Pi = Pr(p(fc) = 1) can be interpreted as the probability that the closed-loop system 

is in the upset state, and the performance Jw can be seen as a function of this 

probability. Let U denote the union of all the disjoint subintervals of [0,1] containing 

the values of pi that result in (III.2.1) being MSS. When U is nonempty, the end 

points of each open subinterval are consecutive points taken from the sequence 0 < 

Po < Pi < • • • < Pr-i < 1, where pi, i — 0 , . . . , r — 1, satisfy one or more of the 

following conditions: po = 0 (p r-I = 1) when A0 (Ai) is Hurwitz; pi are the values 

of pi that result in a unit spectral radius for A; and pi can also be the distinct real 

roots of dJj^l>, If po = 0 (pY-i = 1), then its subinterval is closed on the left (right). 

Theorem III.3.4. When the i.i.d. JLS (Ul.2.1) is MSS, the sign ^j^ is constant 

over each subinterval in IA, that is, Jw(pi) is monotonic on these subintervals. 

Proof: Since Jw and ^Pl^ are rational functions of pi, the only possible endpoints 

for the subintervals are those in U. • 

Mean square stability for the JLS (III.2.1) driven by the HMC p(k) requires 

one to take into account all initial state probability vectors p(0). If the HMC JLS 

(III.2.1) is MSS, from (III.2.5) other partial derivatives can be derived by observing 

that Jo can be seen as a function of the initial state probability vector (observe from 

(III.2.4) that this is no the case for Jw). To do this, define pi = Pr(p(0) = i), i e l f , 
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and p = (p0,..., Pi-\). Then Jpp> evaluated at the specific point p* = (p*Q,..., p}_i) is 

dJo(p) 
= tv(X0Qi), (III.3.12) 

P* dp 

where X° and Qi were defined in Section III.2. Equation (III.3.12) says that a change 

in the initial state probability vector affects at a constant rate of change the value 

of the performance JQ. Actually, this conclusion can be drawn directly from (III.2.5) 

by noting that J0 is linear with respect to Pi. 

III.4 AN APPLICATION IN DISTRIBUTED CONTROL 

An application of the results of Section III.3 to a distributed control system is 

presented in the following example. 

Example III.4.1. Consider the following discretized state space realization of a 

plant: 

xp(k + 1) = Apxp(k) + Bpu(k) 
(III.4.1) 

VP(k) = Cpxp{k), 

where xp(k) G Mnp is the plant's state vector, yp(k) € Mm is the plant's output, 

and u(k) € Mm is the plant's input. The nominal control law used to close the loop 

to attain a desired level of regulation performance is u(k) = w(k) — yc(k), where 

w(k) G M.q is a zero mean, second-order, wide sense stationary process with identity 

covariance matrix Iq and independent of xp(0), and yc(k) G Mm is the controller's 

output. The designed observer-based controller's state space representation is 

xc(k + 1) = Apxc(k) + Bpu{k) + Lp (yJk) - Cpxc(k)) 
(III.4.2) 

yc(k) = Kxc(k), 
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Fig. 1: Schematic of a distributed closed-loop system implemented with a ROBUS-2 
fault tolerant communication system. 

where xc(k) G R"p is the controller's state vector, K and Lp are the pole placement 

and observer matrices, respectively. The nominal closed-loop system is obtained 

when the nominal control law is applied. It results in a nominal regulation level 

of closed-loop performance given by Jw = lim £ ,{||yp(^)||2}- The results in this 
k—>oo 

section make it possible to determine the performance degradation when an update 

to the control law is not received by the actuators at each control cycle due to 

random events caused by a harsh environment acting on a distributed control system 

as shown in Fig. 1. It consists of redundant and equivalent implementations of the 

controller dynamics in N Processing Elements (PEs). Each of the PEs connects to a 

fault tolerant communication network with a Bus Interface Unit (BIU) and each BIU 

is connected to M Redundancy Management Units (RMUs). For simplicity, all the 

sensors and actuators are connected using a single I/O PE and BIU. This PE-BIU 

node is assumed not to fail. This network is based on NASA's SPIDER (Scalable 

Processor-Independent Design for Enhanced Reliability) architecture, which uses the 
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ROBUS-2 communication system [28,41,42]. The network shown in Fig. 1 is referred 

to as an N PE x M RMU distributed control system, where the N PE-BIU nodes 

and M RMUs will be assumed to be the only components that can randomly fail 

silently, i.e., the devices produce no output during an upset control cycle but can 

recover and restart operation by the next control cycle. 

To analyze this distributed control system, suppose that for each control cycle 

k EZ+ the modes of operation of the i-th PE and the j-th RMU are denoted by the 

indicator random variables Zi(k) and Zj(k), respectively. The convention for all the 

indicator random variables is that a value of '0' denotes that the device is available 

and that a value of '1 ' denotes that the device has failed silently. Assume that a valid 

controller output is delivered to the actuators if at least one PE and one RMU are 

available; otherwise, no controller output is delivered to the actuators. This event 

is denoted with the indicator random variable zv(k) that uses the same convention 

assumed for the components. An application of the results in this section leads to 

the following statistical characterization of zv(k) . 

Lemma III.4.1. Consider an N PE x M RMU distributed control system as shown 

in Fig. 1. Assume that all the availability processes {zi(k), i = 1,...,JV} and 

{zj(k), j = 1 , . . . , M} are i.i.d. and mutually independent. Let poi = Pr{zi(k) = 1} 

andpVj = Pr{zj(k) = 1} then zv(k) is an i.i.d. process with distribution characterized 

by 

( N \ / M 

Proof: The proof follows by repeated application of Theorem II.3.1 since 

zv(k) = fa\2[(l>i\N(zi(k),...,zN(k)),<l>i\M(zi(k),...,zM(k))), 
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where the mappings 4>^N (1-out-of-iV) and 4>I\M (1-out-of-M) are parallel structure 

functions, and 02|2 (2-out-of-2) is a series structure function. • 

The effect of the random upsets acting on the N PEs and M RMUs on the closed-

loop system can be characterized as follows. When zv{k) = 1, no control input is 

delivered to the plant's actuators and the communication system restarts the N PEs 

resulting in the controllers' state vectors getting reset to zero. When zv(k) = 0, 

the closed-loop system behaves as the nominal one. Thus, the random upsets result 

in a switched control system indexed by zv{k). In particular, the control law is 

also switched, i.e., u{k) = uZv^)(k)- The value of uZv^)(k) depends on the type of 

actuators, which can be memoryless or have memory. Memoryless actuators assume 

a zero command when no data is received. The effective control input is then 

«*,(*)(*) = w(k) ~ 0- ~ zv(k)) VM, (HI.4.3) 

where the process w(k) is assumed to be independent of zv(k). Actuators with 

memory belong to a class of smart actuators. When no data is received, these 

actuators use the previous control command. The effective control input is 

uZv(k){k) = w(k) - (1 - zv(k)) yc(k) - zv(k)yc(k - 1). (III.4.4) 

A realization of the switched closed-loop system follows from (III.4.1), (III.4.2) and 

either (III.4.3) or (III.4.4) to be 

(fc+l) = (k) + B^wik) 
(III.4.5) 

Vcdk) = Czv(k)XcL(k), 

where yCL(k) = yp{k). For memoryless actuators the state vector is xCh(k) = 

[Xp(k) x^(k)}T G R2np. The state space realizations (A^^), Bzv(k)) for zv{k) G 
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An = 

A 

^ 

LpCp 

Ap 0 

0 0 

-BPK 

Ac 

B0 = 

£i = 

\B„ 

5 n 

where Ac = Ap — BPK — LpCp. The output equation is given by CCL = Co = C\ = 

[Cp 0]. When the actuators have memory, the closed-loop system is augmented with 

an additional state vector that remembers the previous value of the controller's state 

vector. So the state vector in (III.4.5) is xCI^(k) = [a; J (A;) x^(k) xl(k)]T G R3nP, 

xa(k) — xc(k — 1). The state equation realizations in this case are 

4> 

Ai 

Ap -BPK 0 

•̂ pCp Ac 0 

Ap 0 -BPK 

B0 = 

0 0 

0 0 

S i 

Bp 

Bn 

( 

0 

0 

0 

The output equation is not switched. It is given by CCL = Co = Ci = [Cp 0 0]. 

The degradation in regulation performance can now be characterized. The case of 

memoryless actuators and actuators with memory are considered in parallel. First, 

the nominal closed-loop realization for zv{k) = 0, k e Z + follows from (III.4.5) to be 

xn(k + 1) = A0(k)xn(k) + B0{k)w(k) 

yn(k) = CCL£Cn(fc), 

(III.4.6) 
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where xn(k) = xCL(k) for k > 0 is the nominal closed-loop state vector. The regula­

tion error caused by the random upsets is ye(k) = yCh(k) — yn(k) when (III.4.5) and 

(III.4.6) have the same disturbance input w(k). A realization of this error system is 

xCL(k + 1) 

Xn(k + 1) 

AZv{k) 0 

0 A0 

^ C L ( O ) 

JCn(O) 

XCL\k) 

xn{k) 
+ 

BZv 

Bo_ 

w(k), (III.4.7a) 

x0 

Xnfl 

ye(k) = cc -a CL 
(III.4.7b) 

xn(k) 

The error system in (III.4.7) is an i.i.d. JLS switched by zv{k). Let its realization be 

denoted by ( A ^ ^ ) , BZv(k),Cj and the state vector be x(k) = [x^h(k),x^(k)] . The 

performance metrics for (III.4.7) have been derived in Section III.3. In particular, the 

steady-state mean error power is JWje = lim £'{||ye(A;)||2}. When w(k) is applied 
fc—>oo 

to (III.4.7), and if it is MSS, then Theorem III.3.1 gives the closed form expression 

for Jw>e. The partial derivatives of this metric with respect to pi — Pr{zv(k) = 1} 

follow from Theorem III.3.3. For the distributed closed-loop system in Fig. 1, the 

partial derivatives with respect to the upset probabilities of the PEs and RMUs can 

also be derived. A special case is considered next. • 

Lemma III.4.2. Consider an N PE x N RMU distributed control system as 

in Fig. 1. Assume that all the availability processes {zi(k), i = l . . . ,JV} and 

{zj(k), j = l , . . . , iV} are i.i.d. and mutually independent. Let p$ = Pr{zi(k) = 

1} = Vv = Pr{5j(fc) = 1}. Let p*e be such that (IIIA.7) is MSS and Q* = Q{p*e). 
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Then 

dJWte(pe) 
dpe 

dJw(p0,Pi) _ dJw(p0,Pi) 
dpi dp0 (PS.PI) ^ 

(2N(l-p*e)(p*e)
N-iy 

where p0(pe) = 1 -Pi(pe) and p^pe) = 1 - (1 - (pe)N)2-

Proof: Apply Theorem III.3.3 and Lemma III.3.6. • 

Example III.4.2. Consider the simplified longitudinal dynamics of the AFTI-F16 

aircraft given in [13], where the aircraft model has four states (change in speed, angle 

of attack, pitch rate, and pitch angle) and the output of interest is the pitch rate. 

The sampled-data closed-loop system has sampling period T — 0.004 sec, the pole 

placement controller places the nominal continuous-time closed-loop poles at {—0.2± 

jO.9798, —0.01 ± jO.0995}, and the observer's discrete-time poles were chosen to be 

five times faster than the plant's closed-loop poles. The distributed control system 

consists of 2 PEs and 2 RMUs. When these four devices are allowed to randomly 

fail independently then U consists of one nonempty interval and (III.4.5) is MSS 

for p*e € [0, 0.0174[ when memoryless actuators are used and p*e £ [0,0.2461[ when 

actuators with memory are used. Figure 2 shows the analytically computed steady-

state mean error power for both actuator cases. Assuming zero initial conditions for 

the closed-loop and nominal state vectors in (III.4.7), Jw>e starts at zero and is finite 

only for each value p*e that results in MSS. By Theorem III.3.3 this error metric is 

known to be monotonically increasing since the nominal closed-loop system (III.4.6) 

is asymptotically stable. Finally, the partial derivatives of the error metric with 

respect to pe is shown in Figure 3. Observe that by using actuators with memory, 

the closed-loop is MSS over a larger interval, and the error metric is smaller and has 

less sensitivity. 
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Fig. 2: JWte for the pitch rate output versus p*e when pg = pu for a 2 PE x 2 RMU 
distributed control system. 

— — — Memoryless 
With memory 

0.1 0.15 0.2 0.25 

Fig. 3: The sensitivity with respect to pg is shown on a log scale when pg = pv for a 
2 PE x 2 RMU distributed control system. 

III.5 JLS DRIVEN BY AN NHMC OR AN NMC LUMPED 

PROCESS 

In this section, the case when the lumped process p{k) = <j>{z{k)) is either an 

NHMC or an NMC is addressed. As stated in [19], it is rare for a lumping transfor­

mation of an HMC to result in an HMC (see also Example II.4.1). Thus, a suitable 

tool is needed to perform the system analysis. 
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The case when p(k) results in a lumped NHMC is addressed first. Necessary and 

sufficient conditions for p(k) to be an NHMC for some initial state probability vectors, 

that is for nz(0) G <52, can be found for instance in [19, Theorem 22]. Theorem III.5.1 

below gives an important application of the result obtained in Corollary II.2.1. In 

order to present this result, MSES of a dynamical system driven by a NHMC is 

introduced first in Definition III.5.1. Assume that p(k) is an NHMC (not necessarily 

a lumped process) with state space 1? and transition probability matrix Tlp(k), and 

let $ p be a set of initial state probability vectors of p(k). Now consider the following 

JLS 

x(k + 1) = Ap{k)x(k), x(0) = aso, (III.5.1) 

where x(k) G Mn, A £ Mnxn for % G Xt\ and x0 is a random vector with finite second 

moment that is independent of p(k) for k > 0. Exponential second moment stability 

(or mean square exponential stability, MSES) is defined next [11]. 

Definition III.5.1. The equilibrium point at 0 of system (III.5.1) is called MSES 

with respect to <&p if for every value of the initial condition x0 and every initial state 

probability vector 7rp(0) G $ P there exists a and /?, both positive and independent of 

x0 and TTP(0) such that £{||cc(A;)||2} < a||x0||2e-^fc, V k > 0. 

MSES and MSS of the JLS (III.2.1) are equivalent [30]. A MSES test for (III.5.1) 

follows. 

Theorem III.5.1. Let Zi(k), i G J'L, be a set of independent, ergodic HMCs with 

state space Is, and let z(k) be the joint HMC. Assume <f) is a lumping transformation 

and p(k) = (j)(z(k)), a lumped process with state space T^. For 7rz(0) G $ 2 assume 

that p(k) is an NHMC with transition probability matrix Ilp(fc). / / lim Hp(k) = U, 
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where II is a stochastic matrix, then the system (111.5.1) is exponentially second 

moment stable if the spectral radius of A2 is less than one, where 

A2 = d i a g ( ^ ®Al,..., Aj_x <g> Aj^Il ® /„a). 

Proof: When p{k) is an NHMC for 7rz(0) G $ z , Theorem II.2.3 gives conditions that 

lead to a constant matrix approximation of the transition probability matrix Up(k). 

In this case, the result follows from Corollary 2.6 in [11]. • 

Now the case where the lumped process p{k) = 4>(z(k)) results in an NMC is 

considered. Observe that for each k G Z + the function 

V> : 2 f - • J f x lt 

z(k)^^z(k))^(z(k),p(k)) 

defines a two dimensional random variable denoted by 9(k). Since p{k) is a function 

of z(k), the only possible values that 0(k) can take are determined by the state space 

of z(k) and the lumping transformation <f>. For instance consider the joint HMC and 

the structure function given in Example II.4.1. In this case 0(k) can take the values 

{((0,0), 0), ((0,1), 0), ((1, 0), 0), ((1,1), 1)} and no other element in 2f x J2 is possible. 

Thus, the function ip induces the (well) defined finite-state stochastic process given 

in the following lemma. 

Lemma III .5.1. Let Zi(k), i G J?L, be a set of independent HMCs with state space 

Xs, and let z(k) be the joint HMC. Assume 4> is a lumping transformation and p{k) = 

cj)(z(k)), a lumped process with state space X^. Then the family of random variables 

{0(k) : k G Z+} is a well-defined stochastic process with range Xg = {(C>0(O) : C £ 

Xs}> which is a proper subset ofX$ x 2^. 
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Proof: As explained above, the claim follows because tp and <$> are measurable func­

tions of z (k). • 

Since there exists a one-to one relationship between the states of z(k) and the 

values that 0(k) can take, it is natural to identify with the same labels in £ the states 

C of z(k) with the states (£,0(£)) of 0(k). The following theorem shows that the 

process 9(k) is an HMC. 

Theorem III.5.2. Let Zi(k), i e J'L, be a set of independent HMCs with state space 

X$, and let z(k) be the joint HMC with state space 1$, transition probability matrix 

Uz and initial state probability vector irz(0). Assume (f> is a lumping transformation 

and p(k) = 4>(z(k)), a lumped process with state space X(_. Then 6{k) is an HMC 

with transition probability matrix lie = n 2 and initial state probability vector ne(0) = 

nz(0). Moreover, 6{k) is ergodic if z(k) satisfies this property. 

Proof: By Theorem 5 in [40] the following cr-algebra relationship holds 

a(0(k),..., 0(0)) = a(z(k),..., z(0)). To simplify the notation, for any k G Z+, 

denote the events {0(fc + l) = 0(fc + l)}, {0(h) = 9(k),.. .,6(0) = 9(0)}, {z(k + l) = 

z(k+l)} and {z(k) = z(k),...,z(0) = z(0)} by {6(k + 1)}, {9(k),... ,6(0)}, 

{z(k + 1)} and {z(k),..., z(0)}, respectively. Thus, 

Pr{8(k),..., 6(0)}= Pr{z(k),..., z(0)} (111.5.2) 

Now, since z(k) is Markov 

Pv{6(k + l)\{d(k),...,6(0)}} 

= Pv{(z(k + 1), <P(z(k + l)))|{(z(fc), <P(z(k))),..., (z(0), 4>{z(0)))}} 

= Pr{z(k + l)\{z(k),...,z(0)}} 
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= Px{z(k + l)\z(k)} 

= Pr{(z(fc + l),^(z(fc)))|{(z(A:)^(z(A:)))}} 

= Pr{6>(fc + l)|^(fc)}-

Therefore, 9{k) is Markov. Moreover, since the states of z{k) and 9{k) are identi­

fied with the same labels, 9{k) has the same transition probability matrix as z(k). 

Furthermore, by (III.5.2) it follows that 

Pr(0(O)=j) = Pr(z(O)=j) , je£, 

that is, 9{k) has the same initial state probability vector as z(k). Finally, since 

9{k) is completely characterized by z(k), Lemma II.2.1 also determines whether it 

is ergodic or not. • 

Remarks 

1. Theorem III.5.2 is particularly useful when the process p(k) is either a lumped 

NHMC or an NMC. 

2. A similar result is presented in [32], where the Markovian nature of the joint 

process formed by the input and the output of a finite-state machine is used. However, 

note that in the case of Theorem III.5.2 there is no penalty to considering the joint 

process 9(k) = (z(k),p(k)) in the sense that the transition probability matrix is 

of the same dimension as that of the joint HMC z{k). As explained before, this 

is a consequence of p(k) being a function of z(k). In the finite-state machine case 

commented above, the input and the output are independent processes. 
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The Markov chain 6(k) can be used to define the following HMC JLS 

x(k + 1) = Ae{k)x{k) + Be{k)w{k) 
(III.5.3) 

y(fc) = Ce(k)x(k), 

which is selected to be model equivalent to the randomly switched system in (III.2.1), 

that is, for each k E Z+ Ae^k) = A>(*0> B6(k) = -Bp(fc), and C6(k) = Cp(k) [46]. Therefore, 

if (III.2.1) and (III.5.3) have the same initial conditions and input processes, their 

state and output processes will be the same. Consequently, when the process p{k) is 

either an NHMC or a NMC, the JLS (III.2.1) driven by p(k) can be analyzed with 

regards to its stability and performance by means of the equivalent JLS (III.5.3), 

where 9{k) is an HMC. An application of Theorem III.5.2 follows. 

Corollary III.5.1. Let Zi(k), i G J^z,, be a set of independent HMCs with state 

space Ts, and let z(k) be the joint HMC with state space 1$ and transition probability 

matrix II2. Let <fi be a lumping transformation and p{k) = <fi(z(k)), a lumped process 

with state space X^. Then the JLS ^111.2.1^ is MSS if and only if the spectral radius 

of A3 is less than 1, where 

A3 ± diag(y£ ® A*,..., AT
sL_r <g> ^ _ 2 ) ( n z ® Jn2). (III.5.4) 

Proof: The claim follows from Lemma III.2.1 and Theorem III.5.2. • 

Remark 

Note that if the spectral radius of A3 is less than 1, that is, if the JLS (III.2.1) is MSS 

then (III.2.4) and (III.2.5) can be used to calculate Jw and Jo, respectively. In this 

case, the matrix A2 of (III.2.3) must be substituted by the matrix A3 to calculate Q. 
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Example III.5.1. Let Zi(k) and z2(k) be two independent HMCs with state space 

X2 and transition probability matrices 

n, 
0.2 0.8 

0.6 0.4 
n = 

0.9 0.1 

0.5 0.5 

By Lemma II.2.1, the transition probability matrix of the joint HMC z(k) 

(z1(k)Jz2(k)) is 

0.18 0.02 0.72 0.08 

n 2 = r u <g> uZ2 

0.1 0.1 0.4 0.4 

0.54 0.06 0.36 0.04 

0.3 0.3 0.2 0.2 

Observe that z{k) is an ergodic HMC. Define 0 as a l-out-of-2 structure function. 

From Example II.4.1 it is known that the lumped process p(k), given in Table I, is 

not an HMC for all 7r2(0) £ Ez. Therefore, Corollary III.5.1 is the only mathematical 

tool that can be used to analyze the JLS (III.2.1) driven by p(k). To be more specific, 

take £ = 2, that is, the JLS has two modes: 0 and 1 (the state space of p(k) is X2), 

and suppose that 

A {p(fc)=0} -
0 1 

2 1 
, %(fc)=i} = 

1 1 

0 0 

Observe that in this case SL = 22 = 4. According to Theorem III.5.2, the process 

6{k) = (z(k),p(k)) is an ergodic HMC with transition probability matrix n# = n z , 

and the matrix A3 becomes 

^l3 = diag(^ ®Att,Ai®Ai,Al®At,A1
3®Ai,)(nz® J4), 
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where, by the model identification explained above, A0 = A\ = A^ — A{p^=oy and 

A3 = -A{p(fc)=i}. Since the spectral radius of A3 is 3.7637 then, according to Corollary 

III.5.1, the JLS (III.2.1) is not MSS. 

III.6 SUMMARY 

New analytical formulas for the output performance metrics, Jw and J0, of the JLS 

III.2.1 driven by an i.i.d. process p(k) (not necessarily a lumped process) have been 

derived. These new formulas do not follow trivially from the ones known when the 

JLS is driven by an HMC. Sensitivity formulas for these output performance metrics 

with respect to the probabilities Pi = Pr(p(fc) = i), i € Tg were also derived. An 

example based on NASA's ROBUS-2 communication system was presented. Finally, 

the case where the JLS III.2.1 is driven by the process p[k) = <f>(z(k)), when it is 

either a lumped NHMC or an NMC was addressed. First, a new result for analyzing 

MSES when p(k) is a NHMC for ivz(0) € $ was given. Next, for the general case 

where p{k) is simply a lumped process, it was shown that in this case the process 

0{k) = (z(k), p(k)) becomes an HMC making it possible to apply the known results 

for the stability and performance analysis of the system through the concept of model 

equivalence. 
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CHAPTER IV 

PERFORMABILITY ANALYSIS OF A JLS DRIVEN BY 

A LUMPED PROCESS 

IV. 1 INTRODUCTION 

In Chapter I, the term output performance metrics was introduced to refer to 

the steady-state mean output power, JWJ and the mean output energy, Jo- Likewise, 

the term network performance metrics was introduced to refer to the mean time 

to failure, MTTF, and the mean time to repair, MTTR. A unified framework for 

the output and network performance metrics is what is called here performability 

analysis. In order to attain this goal, Problem 5 is entirely solved in this chapter. 

It is shown in Section IV.3 that the output performance metrics of the closed-loop 

control system driven by the lumped process p(k) = 0(z(fc)) are explicit functions 

of the network performance metrics of the network architecture characterized by the 

system availability process p(k). This connection implies that it is not possible to 

require a certain level of performance for the closed-loop control system without 

explicitly taking into account the performance of the network architecture. In effect, 

the sensitivity formulas given in Section IV.3 show how a small change in the network 

performance affects the output performances. This unified framework represents, to 

the best of our knowledge, a new contribution in the theory that integrates two 

fields of study, (discrete-time) dynamic system theory and (discrete-time) reliability 

theory, that so far have been addressed separately. 
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The chapter is organized as follows. In Section IV.2, new sufficient conditions for 

the existence of the MTTF and the MTTR are given when the system availability-

process p(k) is a 2-state lumped NHMC. Sufficient conditions for the existence of 

these network metrics have been given in [36] for an NHMC £(/c), which is not 

the result of a lumping transformation. The conditions given in Section IV.2 are 

simpler and easier to test compared with those given in [36]. Indeed, the results 

obtained here take into account that p(k) is a lumped process. This facilitates the 

analysis because the derivations can be done in terms of the underlying process of the 

lumping transformation 0 and the joint process z(k). Some examples are given to 

show how these new conditions work. In Section IV.3, the derivation of a functional 

relationship between the output performance metrics of the JLS (III.2.1) and the 

network performance metrics is done. Finally, a summary of the results obtained in 

this chapter is given in Section IV.4. 

IV.2 NETWORK PERFORMANCE METRICS 

In this section, a brief review of the network performance metrics, MTTF and 

MTTR, is presented. Let p{k) be a 2-state HMC, not necessarily a lumped process. 

The time to failure (TTF) and the time to repair (TTR) are defined next. 

Definition IV.2.1. Let k0 € Z+ and assume that at this time instant the network 

is working correctly, that is, p(fco) = 0. The random variable 

Tko = mf{k > k0 : p(k) = 1} 

is called the time to failure (of the network architecture). The expectation of the 

TTF, E(rko), is called the MTTF. 
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Definition IV.2.2. Let k± G Z+ and assume that at this time instant the network 

is not working correctly, that is, p{k\) = 1. The random variable 

7
fcl = inf{fc > kx : p{k) = 0} 

is called the time to repair (of the network architecture). The expectation of the 

TTR, E(-yk°), is called the MTTR. 

Remarks 

As usual, the infimum of the empty set is taken to be oo. The TTF and the TTR, as 

defined above, are special cases of a more general concept called hitting times [36]. 

Let the transition probability matrix of p{k) be: 

Poo 1 - Poo 

1 - Pn Pn 

where p00 < 1 and pn < 1. Then it is known (see, e.g., [2,43]) that the MTTF, 

E(Tko), and the MTTR, E(~ykl), are given by 

E(rko) = — - — (IV.2.1) 

1 -Poo 

and 

^(7 fc l) = r
J — , (iv.2.2) 

1 - P n 

respectively. 

Remarks 

1. Since the network performance metrics given in (IV.2.1) and (IV.2.2) do not really 

depend on the specific time where they are calculated, the upper indexes ko and kx 

can be removed. 

n, 
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2. To simplify the notation, the MTTF and the MTTR will be denoted by a and /3 

respectively: 

a = MTTF = — - — (IV.2.3a) 
1 -Poo 

p = MTTR = — - — . (IV.2.3b) 

1 - P n 

The NHMC Case 

The formulas given above are widely known in the literature. However, the case 

when the process p{k) is an NHMC (not necessarily a lumped process) is less known. 

This case has been addressed, for example, by Platis et al. in [36], where sufficient 

conditions are given for the existence of the MTTF and the MTTR, and explicit 

values of these metrics are given for specific examples. When the process p(k) is a 

2-state lumped NHMC, simpler sufficient conditions can be derived in terms of the 

transition probabilities of the joint process, z(k). Moreover, a general formula to 

approximate the value of the MTTF and the MTTR can also be derived. 

For all the following results in this section concerning the lumped process p(k) = 

</>(z(fc)), it is assumed that p(k) is an NHMC for nz(0) € $ with transition probability 

matrix 
Poo(fc) poi(fc) 

n„(fc) = 

Pw(k) Pn(fc) 

In Lemma IV.2.1, the distribution probabilities of the random variables r and 7 are 
given. 

Lemma IV.2.1. Let Zi(k), i € J?L, be a set of independent HMCs with state space 

X2, and let z(k) be the joint HMC with state space Zf. Assume (j> is a lumping 

transformation and p(k) = (f)(z(k)); the system availability process with state space 
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X2- Assume that p(k) is an NHMC with transition probability matrix Hp(k). Let 

k0,ki G Z+ such that p(k0) = <f>(z(k0)) = 0 and p(fci) = 0(z(fci)) = 1. Then 

Pr(Tfc° = l)=p0i(fco), and 

t-2 

Pr(rfco = t)= p01(k0 + t-l) Y[poo(k0 + k), t > 2, t G Z + . (IV.2.4) 

fc=0 

Likewise, Pr(7fcl = 1) = pw(ki) and 

t-2 

Pr(7
fci =t)=p10(k1 + t-l)Y[pu(k1 + k), t>2,teZ+. (IV.2.5) 

fc=0 

Proof: For t = 1 it follows that 

Pr(rfe° = 1) = Pr(p(A;o + 1) = l\p(k0) = 0) = p0i(^o). 

Similarly, 

Pr(7
fci = 1) = Pr(p(fcx + 1) = 0|p(fci) = 1) = p10(fci). 

Equations (IV.2.4) and (IV.2.5) follow by induction and the Markov property of p(k). 

m 

Therefore, whenever the series (IV.2.6) and (IV.2.7) below converge, the MTTF 

and the MTTR are: 

oo t - 2 

E(rk0) = poi(k0) + J2tpoi(k0 + t-l) l[poo(ko + k) (IV.2.6) 
t=2 fc=0 

and 
oo t - 2 

E(lkl) = pio(fci) + ^2tp10(k1 +t-l) Hpnih + k), (IV.2.7) 
t=2 k=0 

respectively. 

Theorem IV.2.1 gives sufficient conditions for the convergence of these series and, 

thereby, for the existence of the MTTF and MTTR. 
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Theorem IV.2.1. Let Zi(k), i G J't, be a set of independent ergodic HMCs with 

state space 12, and let z(k) be the joint HMC. Assume 4> is a lumping transformation 

and p(k) = <j)(z(k)), the system availability process with state space X2. Assume 

that p(k) is an NHMC with transition probability matrix Up(k). Then the limits 

p0Q = lim poo(^) and Pn = lim Pn(k) exist and ifp00 < 1 then the series (IV.2.6) 
k—>oo k—>oo 

converges. Likewise, ifpn < 1 then the series (IV.2.7) converges. 

Proof: The existence of the limits p00 and pn is guaranteed by Corollary II.2.1. The 

sufficiency part of the theorem is only proved for the first case since the other one is 

similar. Observe that 

oo t—2 oo t—2 

5 3 W * o + t-l) ]Jpoo(ko + k)< ^ tY[p00(k0 + k). 
t=2 k= 

t-2 

Let R(t) = t JJpoo(^o + k). Then 

t=2 fc=0 t=2 fc=0 

t - 2 

fc=0 

t - 1 

JJpoo(fco + k) 

Y[poo(k0 + k) 
fc=0 

Taking limits on both sides of this equality gives lim ——--— = p00 < 1. Therefore, 
t—»oo R\t) 

by the ratio test for convergence, the claim follows. • 

By observing that 

P°° = ^ W 5 3 PZmn^zem < —TT- 5 3 *£"»> ( IV .2 .9 ) 
m,n£co m,n€to 

a variation of Theorem IV.2.1 can be given. 

Theorem IV.2.2. Let Zi(k), i 6 J?L, be a set of independent ergodic HMCs with 

state space X2, and let z(k) be the joint HMC with state space X2 and transition 
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probability matrix Tlz = [p^n], m,n € £• Assume (f) is a lumping transformation 

and p(k) = <f>(z(k)), the system availability process with state space X2. Assume that 

p{k) is an NHMC. If 

^ E I t < 1 dV.2.10) 
m,ni 

t/ien f/ie series in (TV.2.S) converges. If 

z u m,ne£o 

^k £ p-K * (IV-2 u) 

then the series in (TV.2.7) converges. 

Proof: The proof follows directly from (IV.2.9) and Theorem IV.2.1 • 

Remarks 

1. Notice that if (IV.2.10) and (IV.2.11) are satisfied with the inequality taken in the 

other direction, then the series do not converge, hence, the MTTF and the MTTR 

are not defined. 

2. To obtain the results given in Theorem IV.2.2, what is actually needed is that 

the inequalities TTZM0 > 0 and nzMi > 0 hold. These inequalities might be satisfied 

without some of the HMCs Zi(k), i € J2^, being ergodic. 

The following example shows how conditions (IV.2.10) and (IV.2.11) work. 

Example IV.2.1. Consider the transformation of L = 3 HMCs with transition 

probability matrices 

pl 1 — pl 

1-q* qi 

where p1 = 0, q1 = 0.3, p2 = 0, q2 = 0.5 and p3 = 0, q3 = 1. Observe that the HMC 

z3 is not ergodic since its transition probability matrix, n23, is not quasi-positive 

n,= , i = l ,2,3, 
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ABLE] 
zi(k) 

0 
0 
0 
0 
1 
1 
1 
1 

I: Transformation table for Examp 
z2(fcL 

0 
0 
1 
1 
0 
0 
1 
1 

zs(k) 
0 
1 
0 
1 
0 
1 
0 
1 

z(k) 

(0,0,0) 
(0,0,1) 
(0,1,0) 
(0,1,1) 
(1,0,0) 
(1,0,1) 
(1,1,0) 

(1,1,1) 

£(*(*)) 
1 
2 
3 
4 
5 
6 
7 
8 

le IV.2 
p(k) 

0 
0 
0 
1 
0 
1 
1 
1 

>.l 

(see Theorem A. 1.2). Since the transformation in Table II is a 2-out-of-3 system, 

S0 = {1,2,3,5} and Zx = {4,6,7,8}. By taking 7rZi(0) = [1 0], i = 1,2,3, one 

can show that the criterion of Theorem 22 in [19] is satisfied. Therefore, the system 

availability process p(k) = <p(z(k)) is an NHMC (for the specific assumed initial 

state probability vectors 71^(0)). 

Now observe that 

nz = 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 

0 0 0 0 0 0.5 0 0.5 

0 0 0 0 0 0.5 0 0.5 

0 0 0 0.7 0 0 0 0.3 

0 0 0 0.7 0 0 0 0.3 

0 0.35 0 0.35 0 0.15 0 0.15 

, M0 = 

1 

1 

0 

1 

0 

0 

0 

, M1 = 

0 

0 

0 

1 

0 

1 

1 

0 0.35 0 0.35 0 0.15 0 0.15 

and the stationary probability is vr2 = [0 0.1373 0 0.2745 0 0.1961 0 0.3921]. 

Therefore, the condition (IV.2.10), XlmnefoPmn/^z-^o = 0 < 1, is satisfied, which 

ensures the existence of the MTTF. However, the MTTR does not exist since the 
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condition (IV.2.11), Ylm,ne£i Pmn/^z^i = 3-83 < 1, is not satisfied. g 

Theorem IV.2.3 below gives general formulas that approximate the values of the 

MTTF and the MTTR when p(k) is an NHMC. First, to simplify the notation write 

Yl ^ (o)n*em 

l-Hk)=Mk)^^ , (IV.2,2) 

£ ^Pje, 
l - ^ ) = P i i ( f c ) = -m,Be£l 

7Tz(0)n*M! 

Then by substituting /i(&;) into (IV.2.6) and g(k) into (IV.2.7), it follows that 

t-2 

E(rko) = fc(fco) + ^ *(/i(feo + * - ! ) ) I l ^ 1 ~ h(k° + fc))' (IV.2.13) 
t=2 fc=0 

and 

oo t - 2 

£(7fcl) = <7(*i) + E *(̂ (fci + * - !)) I I ( 1 - 9(ki + k)), 
t=2 fe=0 

respectively. In addition, associate with the stochastic matrix II, introduced in Chap­

ter II (see Corollary II.2.1), the HMC p with state space X2-

Let r and 7 be the TTF and TTR corresponding to the HMC p, and let E(T) 

and £(7) be the MTTF and the MTTR, respectively. 

Theorem IV.2.3. Let Zi(k), i £ ^ L , be a set of independent ergodic HMCs with 

state space I2, and let z{k) be the joint HMC with state space X^ and transition 

probability matrix Hz = [ p ^ ] , ^ , n £ £• Assume (f> is a lumping transformation and 

p(k) = (j>(z(k)), the system availability process with state space X2- Assume that p(k) 

is an NHMC. Then there exist t0 £ Z+ large enough such that E(rko) and E{^k°) 

can be approximated, respectively, by E(r) and £(7) as follows: 

E(rk°) - h(k0) + Sk° - H(p00) + E(T), (IV.2.14) 
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£(7fc0) = 9(h) + S* - G(p00) + Eft), 

where 

to i - 2 

t=2 

Sh° = Y t(<h^ + * - !)) n^1 - h^ + fc))' *° > 2' 
t = 2 k=0 

t0 t-2 

S'^^tigih + t-l^Hil-gih + k)), t0>2, 
fc=0 

to 

^(Poo) = (l-Poo)X^^oo1> 
t = l 

G(p11) = ( l - P i i ) E ^ i l 1 -

(IV.2.15) 

(IV.2.16) 

t = i 

Proof: Since each HMC Zi(k), i G J^L, is ergodic, the joint process z(k) is also 

ergodic according to Lemma II.2.1. Let nz be the stationary probability vector of 

z(k). Thus, for any e > 0 it is possible to find a value to(e) G Z+ large enough such 

that 

| | n t
2

0 -T7T z | |<£<l . 

By (IV.2.15) and the inequality above it follows that 

oo t - 2 

E(rko) = h(k0) + Sko + Y th(ko + t - 1) ]J(l - h(k0 + k)) 
t = t o + l fc=0 

/ Y PZmn^z^)l^zem\ 

m,n€£o h(k0) + Sk° + Y t 
t = t o + l 

7rz(0)l7r2M0 

V 
/ Y PZrnnKzem\ 

J 

t-2 X P™nKz(0)lirzei 

n 
fe=0 

rn,n€£o 

TTZ(0)1ITZM0 

= h(k0)+sk
h° + Y * 

t = t 0 + l 

m,n€fo 

7T Z M 0 

_2 X) ̂ ^ 

/ 

t - 2 

n 
fc=0 

m,n€£o 

KZM0 

t-2 

=h(k0)+sk
h°+ Y *(i-Pbo) n Poo 

t = t 0 + l 
oo 

fc=0 

Mfco) + 5{°+ Y t^-PooM 
4 - 1 
00 

t = t o + l 
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= h(ko) + Sk
h° + (1 - p00) ( ( 1 _ ^ ) a - E ^oo1) 

to 

= h(ko) + Sko + E(T) - (1 - p00) J2 ^oo1 

t=l 

= h(ko) + Sk
h°-H(p00) + E(r). 

Similar arguments prove the approximate formula for E(jk°). m 

IV. 3 PERFORM ABILITY ANALYSIS 

In this section, it is shown that the output performance metrics of the closed-loop 

control system driven by the lumped process p(k) = <f>(z(h)) are explicit functions 

of the network performance metrics of the network architecture characterized by the 

system availability process p(k). This performability analysis is first done for the 

i.i.d. case, that is, when p(k) is an i.i.d. process. Next, it is generalized for the HMC 

case, that is, when the lumped process p(k) is in an HMC. 

The i.i.d. Case 

Let Zi(k), % G J'L, be a set of independent i.i.d. processes with state space X5, and 

let p{k) be the system availability process with state space X2. By Theorem II.3.1, it 

is known that p{k) = <j>(z(k)) is also an i.i.d. process for any lumping transformation. 

In Section III.3, the probabilities Pr(p(fc) = i), i € X2, have been denoted hy p%- Thus 

if 0 < pi < 1, the MTTF, a, and the MTTR, /?, can be expressed in terms of the 

probabilities po and pi (see (IV.2.3)) as follows 

a = —!—, (IV.3.1a) 
1 -Po 

P=——. (IV.3.1b) 
I-Pi 
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From these equations it follows that 

po = 1 - - , (IV.3.2a) 

a 
Pi = 1 - i . (IV.3.2b) 

Equations (IV.3.2a) and (IV.3.2b) are used in Theorem IV.3.1 below to express the 

output performance metrics Jw and J0 as explicit functions of the network perfor­

mance metrics (see Problem 5 in Chapter I). 

Theorem IV.3.1. Let Zi(k), i € J?L, be a set of independent i.i.d. processes with 

state space Is, and let z{k) be the joint i.i.d. process. Assume <$> is a lumping trans­

formation and p(k) = cj){z{k)), the system availability process with state space Z2, 

that drives the JLS fill.2.1). Then the output performance metrics Jw and Jo are 

functions of the network performance metrics a and (5 given, respectively, by 

Jw(a,0) = tvfc0Q(a,p)cA (l - ^ + tv(c1Q(a,0)d[\ (l - i \ (IV.3.3) 

J0(a,p) = ti(c0M(a,P)C%\ (l - ^ + tr(c1M(a,/3)C^\ (l - ± Y (IV.3.4) 

where 

Q(a,P) = w-1((ln2-A(a,P))-1wec{B(a,P))\ 

A(a, (3) = A0® A0 (l - ^\ +A1 <g> AYl - ^ Y (IV.3.5) 

B(a, (5) = BQBl (l - ±) +BxBl (l - ^\, (IV.3.6) 

M(a,(3) = vec"^(7„2 - A(a,(3)y \ec(X°)Y 

Proof: It follows directly from Theorems III.3.1 and III.3.2 by taking into account 

(IV.3.2a) and (IV.3.2b). • 

The sensitivity of Jw and JQ with respect to a and (3 are defined next. 
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Definition IV.3.1. Let 5* = (a*,p*) be such that the i.i.d. JLS (III.2.1) is MSS. 

The sensitivity of Jw and J0 with respect to a and /3 are denoted by Sw(a), Sw(/3) 

and So(a), SQ(/3), respectively, and are given by 

Sw(a) = 

S0(a) = 

a dJw(a,P) 

Jw(a,P) da 

a dJ0(a,P) 
J0(a,P) da 

q / m _ P dJw(a,/3) 

g=5,' *wW-Jw(a,P) dp 

cra\- P 9J0(a,p) 
5=6* Mot,p) dp 

8=8* 

8=8* 

The partial derivatives of Jw and Jo with respect to a and P are given next. The 

result can be derived directly from Theorem IV.3.1 

Theorem IV.3.2. Let 6* = (a*,/?*) be such that the i.i.d. JLS (111.2.1) is MSS and 

let Q* = Q{8*), M* = M(6*), A* = A(5*) and B* = B(8*) be the values ofQ, M, A 

and B at this point, respectively. Then 

dJw(a,P) 

da 

dJw(a,P) 

= tr Co 
6=6" 

dQ(a,P) 

dp 

dJ0(a,P) 

8=8* 

da 

dJ0(a,p) 

8=8* 

dp 

trlCi 

= t r ( d 

tr(c0 

= tr(c0 

trfcx 

= trfd 

da 

dQ(a,p) 
da 

dQ(a,P) 
dp 

dQ(a,P) 
dp 

dM(a, p) 

8=8* 

8=8* 

8=5* 

5=8* 

c\ 

cl 

da 

dM{a, P) 

8=5* 

da 

dM(a, p) 

triC, 

dP 

dM(a, p) 

dp 

8=8* 

8=8* 

8=8* 

8=5* 

cl 

c 

T 

1 
l - - = - ) + tr(C0Q*C( 0 

a* + 

1 >y 

P* + 

a* 

1 

1 p* 

a . / + t r^„M.Q n - | + 

1 

l - l ) + tr(ClM-Cf)(i)2
+ 

1 - i 
a* 

where 
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da 
WW) =vec-inIn2-A*)-^(Ao®Ao)(J-)\In2-A*)-\ec(B*)+ 

5=5* V \ a ' 

vec 

dp 
dQ^ ® I = vec"1 ((/„, - A*)-\{Ai ® Ax) (j^ (Jn2 - ^ ) - 1 v e c ( ^ ) + 

v e c ^ B O ^ ) 2 ) ) , 

9M(a, 0) | = ^ ^ ( ^ _ ^ - i ( ^ g, ̂  ^J_y (/n2 _ ^ " V e c ( X o ^ } 

1 ((/„, - ^ ) _ 1 ( ^ i ® AO f-^) (/„» - A*y\ec(X0)). 

da 
dM(a,p) 

dp vec 

Proof: These identities follow directly from taking partial derivatives in (IV.3.3), 

(IV.3.4), (IV.3.5) and (IV.3.6). • 

Therefore, a change in the value of Jw at the specific point 8* = (a*,/3*) caused 

by a small change in S, d5 = (da, d/3), is given by 

dJw(a,(3)\5=5, = 
dJw(a,P) dJw(a,(3) 

da dp (5=5* 

da 

dp 
(IV.3.7) 

Similarly for J0, 

dJ0(a,p)\5=s, = 
dJ0{a,p) 8J0(a,p) 

da dp 6=6* 

da 

dp 
(IV.3.8) 

Since po +Pi = 1, from (IV.3.2) it follows 

13 a 

Hence, a and P can not change arbitrarily. If we consider a a s a function of P then 

dot = — (/3i1)2 dp. Likewise, if one considers /? as a function of a then dp = — ,_^2rfo;. 
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In this case, (IV.3.7) and (IV.3.8) take the scalar form 

dJw{P)\p=p* — 

dJw(a)\a=a* = 

dJw(a,P) 1 dJw{a,P) 

da ( /?*- l ) 2 dp 

dJw(a,p) dJw(a,p) 1 

dP, 
5=5* 

da dp (a* - l )2 da, 

(IV.3.9a) 

(IV.3.9b) 
5=5* 

and 

dJ0(P)\p=/3* = 

dJo(a)\a=a* = 

dJ0(a,P) 1 dJ0(a,p) 
da (P* -1)2 dp 

dJ0(a,p) dJQ(a,P) 1 

dp, 
5=5* 

da dp {a* - l )2 da, 
5=5* 

respectively. 

The following example computes the sensitivity of the steady-state mean output 

power, Jw, with respect to the MTTF and the MTTR. 

Example IV.3.1. Let ziy i G J*L, be a set of independent i.i.d. processes with 

state space T2 = {0,1}. Let z(k) be the joint i.i.d. process and p = <j>{z{k)), the 

system availability driving the i.i.d. JLS (III.2.1). Let p*0 = Pr(p(fc) = 0) = 0.8 

and pi = Pv(p(k) = 1) = 0.2 be the probability distribution of p(k). Consider the 

following matrices 

Ac 
0.5 

0 

- 1 

- 1 
, Ax = 

0.3 0 

- 2 0.8 
Bn = 

0.2 0.5 

1 0 

0.8 

0 

1 

- 1 
j Co — 

2 0.3 

0.4 0.8 
, Ci = 

- 2 0.5 

1 0 
Bx = 

Since the spectral radius of A is 0.128, then by Lemma III.3.1 the JLS (III.2.1) is 

MSS. 
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From (IV.3.1a) and (IV.3.1b), the specific value of 5 is 5* = (a*,p*) = (5,1.25). 

Following Theorem IV.3.1, from the matrices above the specific values of A, B and 

Q are determined to be 

A* = A(6*) = 

0.218 -0.4 -0.4 0.8 

-0.12 -0.352 0 0.8 

-0.12 0 -0.352 0.8 

0.8 -0.32 -0.32 0.928 

B* = B{5*) = 
0.56 -0.04 

-0.4 1 

From Theorem IV.3.2, it follows that 

dQ(a,(3) 

, Q* = Q(5*) = 
14.6809 16.5195 

16.5195 30.1701 

da 

dQ(a,(3) 

S=5* 

8(3 5=6* 

0.7044 0.8844 

0.8844 1.2468 

1.8952 -3.7401 

-3.7401 16.7489 

Then, Equation (IV.3.7) becomes 

dJw(a,p)\5=5, 9.3271 45.4732 
da 

dp 

When Jw is only taken as a function of a, (IV.3.9b) yields 

dJw(a)\a=a* = 6.485 da. (IV.3.11) 

Likewise, when Jw is only taken as a function of /?, (IV.3.9a) yields 

dJw(J3)\f,=f,. = -103.7604 dp. (IV.3.12) 



76 

From (IV.3.11) and (IV.3.12), one can conclude that the steady-state mean output 

power is more sensitive with respect to the MTTR than with respect to the MTTF. 

However, it is observed that a positive change in the MTTF increases the value of 

Jw and, on the other hand, a positive change in the MTTR significantly decreases 

the value of Jw. 

The HMC Case 

The performability analysis when the lumped process p(k) = <j>{z{k)) is i.i.d. can 

also be done when p(k) results in an HMC for all initial state probability vectors of 

z(k), that is, when nz(0) e Ez. From (IV.2.3) it follows 

Poo = 1 - - , (IV.3.13a) 
a 

Pn = 1 - ^ (IV.3.13b) 

Thus, 

1 - \/a \la 

[ 1/(3 1 - 1//3 _ 

The sensitivity of Jw and J0 with respect to a and (3 are defined similarly as for 

the i.i.d. case. By taking into account (III.2.3), (III.2.4) and (III.2.5), the following 

theorem relates the output performance metrics with the MTTF and the MTTR. 

Theorem IV.3.3. Let Zj(fc), i G J'L, be a set of independent HMCs processes with 

state space Xg, and let z(k) be the joint HMC process. Assume <j> is a lumping 

transformation and p(k) = <j>(z(k)), the system availability process that drives the 

JLS (111.2.1). Further assume that p{k) is an HMC for all nz(0) 6 Ez and has state 

space 12. Let 5* = (a*,f3*) be such that the JLS (III.2.1) is MSS. Then the output 
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performances metrics, Jw and JQ are functions of the network performance metrics 

a and ft as given below: 

Jw(a,P) = tr 

Jo(a,/3) = t r 

Bw[Q0(a,/3)n0
p + Q1(a,/3)nl 

X° Q0(a, (3) Pr(p(0) = 0) + Q^a, p) Pr(p(0) = l) 

(IV.3.14) 

, (IV.3.15) 

where Q = (Qo, Qi)- The partial derivatives are given by 

dJw(a,P) 

da 

dJw(a,P) 

dp 

dJ0(a,P) 
da 

dJ0(a,P) 
dp 

where 

6=6* 

6=5' 

6=6* 

6=S* 

tr B 

= tr F 

5=6* 

6=6* 

tr [X 

= t r U 

dQ0(a,P) 0 dQx{a,P) l 

da *' + —da—^. 

dQ0(a,P) 0 dQx{a,p) 1 
TV + TV 

dp ' d/3 ' 

?9pH pr(p(0) _ 0) + °9p® Pr(p(0) - 1)' 
da da 

^ i a P r ( p ( 0 ) = 0) + ^ i a P r ( p ( 0 ) = l ) 

5=6* 

6=6* 

dQ(a,P) 
da 

dQ(a, 

dp 

dA(a, 
da 

dA(a, 

P) 

P) 

P) 

dA(a,p) 

6=6 

6=6 

da 

dA(a, P) 

dp 

6=5* 

5=6* 

= tp-l({in2-A*y1( 

= <P-i((in,-A*y1( 

= diag(AQ®A0,A1®A1)(
dU^(3) 

6=5* 

5=5* 

{In2-A*)v{C)\, 

{in2-A*ylip{c)\ 

h2 \, 

= diag(A0®A0,A1®A1)(
dUp^P) 

6=5* 

6=5* 

Proof: Equations (IV.3.14) and (IV.3.15) follow from (III.2.4) and (III.2.5), respec­

tively. The partial derivatives follow directly from (IV.3.14) and (IV.3.15) and by 

taking into account (III.2.3). • 

Since in this case a and /? are not related, these parameters can change arbitrarily. 

Therefore, a change in the value of Jw at the specific point S* = (a*,P*) caused by 
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dJw(a, P)\s=s. = 
dJw(a,p) dJw(a,p) 

da dp 6=5* 

da 

d(3 

Similarly for J0: 

dJ0(a, P)\5=5. = 
dJ0(a,p) dJ0(a,p) 

da dp 5=5* 

da 

dp 

IV.4 SUMMARY 

In this chapter, new sufficient conditions have been given to guarantee the exis­

tence of the MTTF and the MTTR when a network architecture is characterized by a 

2-state lumped NHMC system availability process p(k) — 4>(z(k)). Since these con­

ditions were given in terms of the transition probabilities of the underlying process, 

z(k), the criterion is easy to check. In addition, general formulas to approximate the 

values of the MTTF and the MTTR were given in terms of the steady-state proba­

bilities p00 and pn introduced in Corollary II.2.1. A new unified framework between 

closed-loop control system theory and fault-tolerant network architecture has been 

given in Section IV.3 when the lumped process p{k) is an i.i.d. process or an HMC. 

The output performance metrics Jw and Jo have been expressed as a function of 

the MTTF and the MTTR, and sensitivity formulas were given to see how a small 

change in these network performance metrics affect the output performance metrics. 
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CHAPTER V 

CONCLUSIONS AND FUTURE RESEARCH 

In this chapter, the main conclusions of the dissertation are given. The objectives 

established in Problem 1 through Problem 5 in Chapter I have been successfully 

reached as explained below. 

Problem 1 

a) The probability distribution of p(k), Pj(k) = Pr(p(k) = j), j G Xg, was given 

in Lemma II.2.2. This result only assumes that p{k) is a well-defined stochastic 

process, which is the case since the lumping transformation, 0, is a measurable 

function. Therefore, the probability distribution of p(k), given in II.2.3, is valid in 

particular when the system availability process results in either an NHMC or an 

NMC. These probabilities are easy to calculate as they are given in terms of the 

initial state probability vectors 7rZi(0), i G J?L, and the transition probability matrix 

of the joint process z(k), Hz, that are assumed to be known. 

b) The availability of the system at steady-state, lim Pr(p(A;) = 0), was derived 
fc—>oo 

directly from Lemma 11.2.2, and the result is presented in Theorem II.2.1. 

c) The one-step transition probabilities of p(k), Pij(k) = Pr(p(k + 1) = j\p(k) = 

i), i,j G Xe, were derived in Theorem II.2.2. It was shown that they are well-

defined probabilities if the probabilities of the system to stay in each mode satisfies 

Pr(p(fc) = i) > 0, i G Xg. The one-step transition probabilities given in (II.2.7) result 

in the well defined time-varying stochastic matrix Tlp(k) for the particular case when 

the system availability process, p(k), has only two states. 
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d) The steady-state value of the one-step transition probabilities Pij(k), lim Pij(k), 
k—>oo 

were derived in Theorem II.2.3 assuming that the HMCs Zi(k), i 6 J'L are ergodic. 

With this result, the matrix np(A;) becomes the stochastic matrix II at steady-state. 

This matrix was used in Theorem III.5.1 to get a new result regarding the MSES of 

a JLS driven by an NHMC. 

Problem 2 

a) Under the hypothesis that the i.i.d. processes z^k), i £ J^ , are mutually inde­

pendent, it was established that the lumped process p(k) is also an i.i.d. process. 

The result is given in Theorem II.3.1. 

b) The output performance metrics Jw and Jo for the i.i.d. JLS (III.2.1) were pre­

sented in Theorems III.3.1 and III.3.2, respectively. 

c) The benefit of using these new formulas for Jw and Jo, instead of the known 

ones for the HMC case, was explained in the same section where the formulas were 

derived. Essentially, this benefit is based on computational issues related to the lower 

dimension of the matrix A in comparison to the matrix Ai. 

Problem 3 

To analyze the MSS and the output performance metrics of the JLS (III.2.1) 

driven by p(k), when it is an NHMC or an NMC, a new result, Theorem III.5.2, 

is presented. Specifically, it was proved that the joint process 6{k) = (z(k),p(k)) 

becomes an HMC with the same transition probability matrix as the joint HMC 

z(k). Therefore, by introducing a new JLS, driven by the process 0(h), and taking 

into account the notion of model equivalence, it is possible to analyze the MSS and 

the output performance metrics of the JLS (III.2.1) driven by p(k). 
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Problem 4 

Sensitivity formulas to analyze the effect of a small change in the probability of 

upset on Jw and J0 have been given in Theorem III.3.3. These results directly follow 

from the ones given for Jw and J0 in Theorems III.3.1 and III.3.2, respectively. 

Problem 5 

When the lumped process p{k) is either an i.i.d. process or an HMC, it was shown 

that the performance metrics Jw and J0 of the JLS (III.2.1) are explicit functions 

of the MTTF and MTTR for the network architecture represented by p(k). These 

results, which are given in Theorems IV.3.1 and IV.3.3, are one of the main con­

tributions of this dissertation. They represent a new theoretical approach to better 

integrating system theory with the reliability theory. 

Future Research 

The following problems need further work. 

1. In Theorem II.2.3 it has been shown that the one-step transition probability 

matrix U(k) of the lumped process p{k) converges at steady-state to the constant 

stochastic matrix II. It is not clear if there exist a stochastic process, related with 

the matrix II, such that p(k) converges in some sense to this process. 

2. Even though Theorem III.5.2 provides analytical tools for analyzing the MSS of 

the JLS III.2.1 driven by the lumped process p{k) when it is not an MC, there is 

still a need to solve the computational problem regarding the dimensionality of the 

matrix Ai when one wants to check MSS. 
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APPENDIX A 

MARKOV CHAINS 

A. l BASIC CONCEPTS 

Let (O, J7, Pr) be a probability space over which all the stochastic processes con­

sidered in this work will be defined. Let Xs — {0,..., S — 1}, S > 2, be a finite set. 

In this appendix, a brief review is given about MCs that take values in Xs- The set 

Xs is called the state space of the MC. 

Definition A.1.1. Let A = [ctij], i,j G Xs, be a square matrix with components 

from M. It is said that A is a stochastic matrix (by rows) if 

1. For all i, j G 2$: a^ > 0. 
5-1 

2. For all i G X5: VJ ai:;- = 1. 
j=o 

All the stochastic matrices considered in this dissertation are taken to be stochas­

tic by rows. 

Definition A.1.2. Let {z(k) : k G Z + } be a stochastic process with state space X5, 

and let 

Pij(k)^Pi(z(k + l)=j\z{k)=i) 

be the one-step transition probability from the state i at time k to the state j at 

time fc + 1 such that II(fc) = [Py(^)] hj G X5 is a stochastic matrix. Let 7r(0) = 

(po7 •••iPs-i) 'with pj = Pr(z(0) = i), i G X5, be a vector called the initial state 

probability vector of z(k). It is said that the process z{k) is an MC with transition 
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probability matrix H(k) and initial state probability 7r(0) if the following Markov 

property is satisfied: 

Pr(z(fc + 1) = C(fc + 1) | z(k) = C(fc), • • •, (A.l.l) 

z(0) = C(0)) = Pr(z(A; + 1) = C(fc + 1) | z(fc) = C(*0), 

where Pr(z(fc) = C(̂ )> • • • i z(0) = C(0)) > 0) a n d C(^) is a state of z(k) in Xs at time 

fc. 

Remarks 

1. When the one-step probabilities Pij(k), i,j € Xs, do not depend on time k, the 

MC is said to be an HMC. Otherwise, it is called an NHMC. 

2. Let z(k) be an HMC. The expression pj- is used to denote the A;-step transition 

probability from the state i to the state j , that is, pj. = Pr(z(fc) = j \ z(0) — i). 

Correspondingly, the stochastic matrix U^ = [pj- ] is called the fc-step transition 

probability matrix of the HMC z{k). It is known that n(fc) = Uk = II x • • • x II. 
k times 

Let z(k) be an HMC with state space Xs- The vector n(k) = [(Prz(fc) = 

0 ) , . . . , (Prz(fc) = 5 — 1)] is called the state probability vector of z(k) at time k. 

The following theorem will be used throughout this work. 

Theorem A . l . l . Let z(k) be an HMC with transition probability matrix U. and 

initial state probability vector 7r(0). Then 

Tr(Jfc) = 7r(0)nfc, fc£Z+, 

where n° is identified with the identity matrix IsxS-
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Definition A.1.3. Let z(k) be an HMC with state space Xs, one-step transition 

probability matrix II — [pi:?-] and A;-step transition probability Il(fc) = [p>- ]. It is said 

that z{k) is ergodic if the limits 

*! = I™ pg} 

fc—>oo 

1. exist for all j G Xs, 

2. are independent of i EXs, and 

3. for all j G Xs, Wj > 0 such that 2_jnj = 1-
5 - 1 

J=0 
Remarks 

1. The vector n = [7Ti,..., 7rs_i] is called the stationary probability vector of z(k) 

and can be found by solving the left eigenvector equation: 

7T = 7rII. 

2. Since the limits -Kj — lim pj- are independent of i, then lim 7r(fc) = it. 
k—»oo fe—»oo 

Definition A.1.4. Let z(fc) be an HMC with state space Xs and transition prob­

ability matrix II = \pij\. If all entries of IIfc are positive for some k G {2,3,...}, 

it is said that IT is quasi-positive. If for each pair of indexes i,j £ Xs there ex­

ists an n G Z + such that p\™' > 0, it is said that the MC is irreducible. If 

1 =gcd{n > 1 : py*' > 0 V i G X5}, where ugcd" denotes the greatest common 

divisor, it is said that the MC is aperiodic. 

Theorem A.1.2. Let z(k) be an HMC with state space Xs and transition probability 

matrix II. Then the following statements are equivalent. 

1. The HMC z(k) is ergodic. 
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2. The transition probability matrix II is quasi-positive. 

3. The HMC z(k) is aperiodic and irreducible. 

When z(k) is an ergodic HMC with transition probability matrix II, the sequence 

of matrices {IIfc : k G Z+} converges to a stochastic matrix, II, whose rows are 

precisely equal to the stationary probability vector n. 

A.2 A NOTE ABOUT LUMPABILITY 

Let z(k) be an HMC with state space Is, and let E be the set of all initial state 

probability vectors, 7r(0). Let £ be any function that lumps or aggregates the states 

of z(k). The function £ is called a lumping transformation, and lumpability is the 

theory that determines conditions under which the lumped process, £(z(fc)), results 

in a MC. When the lumped process is an HMC for all n(0) G S, it is said that the 

lumpability is strong. On the other hand, when this lumping transformation results 

in an HMC for 7r(0) € $, where $ is a proper subset of E the lumpability is said to 

be weak ( [23, p. 134]). Conditions under which a lumping transformation results in 

an NHMC have been established (see, e.g., [19]). These conditions also depend on 

the initial state probability vector 7r(0) of the HMC z(k). Therefore, MCs that result 

from a lumping transformation can be called lumped MCs to distinguish them from 

the MCs described in Definition A. 1.2, as they depend on the initial distribution 

of the underlying HMC z(k). Not all lumping transformations result in an MC. In 

this case, the resulting process is simply called a lumped process. This dissertation 

considers the effect of a lumping transformation on the MSS and performance of a 

closed-loop control system when it is driven by a lumped process. 
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