8,034 research outputs found

    Perfect Quantum Network Communication Protocol Based on Classical Network Coding

    Full text link
    This paper considers a problem of quantum communication between parties that are connected through a network of quantum channels. The model in this paper assumes that there is no prior entanglement shared among any of the parties, but that classical communication is free. The task is to perfectly transfer an unknown quantum state from a source subsystem to a target subsystem, where both source and target are formed by ordered sets of some of the nodes. It is proved that a lower bound of the rate at which this quantum communication task is possible is given by the classical min-cut max-flow theorem of network coding, where the capacities in question are the quantum capacities of the edges of the network.Comment: LaTeX2e, 10 pages, 2 figure

    General Scheme for Perfect Quantum Network Coding with Free Classical Communication

    Full text link
    This paper considers the problem of efficiently transmitting quantum states through a network. It has been known for some time that without additional assumptions it is impossible to achieve this task perfectly in general -- indeed, it is impossible even for the simple butterfly network. As additional resource we allow free classical communication between any pair of network nodes. It is shown that perfect quantum network coding is achievable in this model whenever classical network coding is possible over the same network when replacing all quantum capacities by classical capacities. More precisely, it is proved that perfect quantum network coding using free classical communication is possible over a network with kk source-target pairs if there exists a classical linear (or even vector linear) coding scheme over a finite ring. Our proof is constructive in that we give explicit quantum coding operations for each network node. This paper also gives an upper bound on the number of classical communication required in terms of kk, the maximal fan-in of any network node, and the size of the network.Comment: 12 pages, 2 figures, generalizes some of the results in arXiv:0902.1299 to the k-pair problem and codes over rings. Appeared in the Proceedings of the 36th International Colloquium on Automata, Languages and Programming (ICALP'09), LNCS 5555, pp. 622-633, 200

    Quantum linear network coding as one-way quantum computation

    Get PDF
    Network coding is a technique to maximize communication rates within a network, in communication protocols for simultaneous multi-party transmission of information. Linear network codes are examples of such protocols in which the local computations performed at the nodes in the network are limited to linear transformations of their input data (represented as elements of a ring, such as the integers modulo 2). The quantum linear network coding protocols of Kobayashi et al [arXiv:0908.1457 and arXiv:1012.4583] coherently simulate classical linear network codes, using supplemental classical communication. We demonstrate that these protocols correspond in a natural way to measurement-based quantum computations with graph states over over qudits [arXiv:quant-ph/0301052, arXiv:quant-ph/0603226, and arXiv:0704.1263] having a structure directly related to the network.Comment: 17 pages, 6 figures. Updated to correct an incorrect (albeit hilarious) reference in the arXiv version of the abstrac

    Quantum Capacities for Entanglement Networks

    Full text link
    We discuss quantum capacities for two types of entanglement networks: Q\mathcal{Q} for the quantum repeater network with free classical communication, and R\mathcal{R} for the tensor network as the rank of the linear operation represented by the tensor network. We find that Q\mathcal{Q} always equals R\mathcal{R} in the regularized case for the samenetwork graph. However, the relationships between the corresponding one-shot capacities Q1\mathcal{Q}_1 and R1\mathcal{R}_1 are more complicated, and the min-cut upper bound is in general not achievable. We show that the tensor network can be viewed as a stochastic protocol with the quantum repeater network, such that R1\mathcal{R}_1 is a natural upper bound of Q1\mathcal{Q}_1. We analyze the possible gap between R1\mathcal{R}_1 and Q1\mathcal{Q}_1 for certain networks, and compare them with the one-shot classical capacity of the corresponding classical network
    • …
    corecore