42 research outputs found

    Blickpunktabhängige Computergraphik

    Get PDF
    Contemporary digital displays feature multi-million pixels at ever-increasing refresh rates. Reality, on the other hand, provides us with a view of the world that is continuous in space and time. The discrepancy between viewing the physical world and its sampled depiction on digital displays gives rise to perceptual quality degradations. By measuring or estimating where we look, gaze-contingent algorithms aim at exploiting the way we visually perceive to remedy visible artifacts. This dissertation presents a variety of novel gaze-contingent algorithms and respective perceptual studies. Chapter 4 and 5 present methods to boost perceived visual quality of conventional video footage when viewed on commodity monitors or projectors. In Chapter 6 a novel head-mounted display with real-time gaze tracking is described. The device enables a large variety of applications in the context of Virtual Reality and Augmented Reality. Using the gaze-tracking VR headset, a novel gaze-contingent render method is described in Chapter 7. The gaze-aware approach greatly reduces computational efforts for shading virtual worlds. The described methods and studies show that gaze-contingent algorithms are able to improve the quality of displayed images and videos or reduce the computational effort for image generation, while display quality perceived by the user does not change.Moderne digitale Bildschirme ermöglichen immer höhere Auflösungen bei ebenfalls steigenden Bildwiederholraten. Die Realität hingegen ist in Raum und Zeit kontinuierlich. Diese Grundverschiedenheit führt beim Betrachter zu perzeptuellen Unterschieden. Die Verfolgung der Aug-Blickrichtung ermöglicht blickpunktabhängige Darstellungsmethoden, die sichtbare Artefakte verhindern können. Diese Dissertation trägt zu vier Bereichen blickpunktabhängiger und wahrnehmungstreuer Darstellungsmethoden bei. Die Verfahren in Kapitel 4 und 5 haben zum Ziel, die wahrgenommene visuelle Qualität von Videos für den Betrachter zu erhöhen, wobei die Videos auf gewöhnlicher Ausgabehardware wie z.B. einem Fernseher oder Projektor dargestellt werden. Kapitel 6 beschreibt die Entwicklung eines neuartigen Head-mounted Displays mit Unterstützung zur Erfassung der Blickrichtung in Echtzeit. Die Kombination der Funktionen ermöglicht eine Reihe interessanter Anwendungen in Bezug auf Virtuelle Realität (VR) und Erweiterte Realität (AR). Das vierte und abschließende Verfahren in Kapitel 7 dieser Dissertation beschreibt einen neuen Algorithmus, der das entwickelte Eye-Tracking Head-mounted Display zum blickpunktabhängigen Rendern nutzt. Die Qualität des Shadings wird hierbei auf Basis eines Wahrnehmungsmodells für jeden Bildpixel in Echtzeit analysiert und angepasst. Das Verfahren hat das Potenzial den Berechnungsaufwand für das Shading einer virtuellen Szene auf ein Bruchteil zu reduzieren. Die in dieser Dissertation beschriebenen Verfahren und Untersuchungen zeigen, dass blickpunktabhängige Algorithmen die Darstellungsqualität von Bildern und Videos wirksam verbessern können, beziehungsweise sich bei gleichbleibender Bildqualität der Berechnungsaufwand des bildgebenden Verfahrens erheblich verringern lässt

    ExWarp: Extrapolation and Warping-based Temporal Supersampling for High-frequency Displays

    Full text link
    High-frequency displays are gaining immense popularity because of their increasing use in video games and virtual reality applications. However, the issue is that the underlying GPUs cannot continuously generate frames at this high rate -- this results in a less smooth and responsive experience. Furthermore, if the frame rate is not synchronized with the refresh rate, the user may experience screen tearing and stuttering. Previous works propose increasing the frame rate to provide a smooth experience on modern displays by predicting new frames based on past or future frames. Interpolation and extrapolation are two widely used algorithms that predict new frames. Interpolation requires waiting for the future frame to make a prediction, which adds additional latency. On the other hand, extrapolation provides a better quality of experience because it relies solely on past frames -- it does not incur any additional latency. The simplest method to extrapolate a frame is to warp the previous frame using motion vectors; however, the warped frame may contain improperly rendered visual artifacts due to dynamic objects -- this makes it very challenging to design such a scheme. Past work has used DNNs to get good accuracy, however, these approaches are slow. This paper proposes Exwarp -- an approach based on reinforcement learning (RL) to intelligently choose between the slower DNN-based extrapolation and faster warping-based methods to increase the frame rate by 4x with an almost negligible reduction in the perceived image quality

    Perceptual Visibility Model for Temporal Contrast Changes in Periphery

    Get PDF
    Modeling perception is critical for many applications and developments in computer graphics to optimize and evaluate content generation techniques. Most of the work to date has focused on central (foveal) vision. However, this is insufficient for novel wide-field-of-view display devices, such as virtual and augmented reality headsets. Furthermore, the perceptual models proposed for the fovea do not readily extend to the off-center, peripheral visual field, where human perception is drastically different. In this paper, we focus on modeling the temporal aspect of visual perception in the periphery. We present new psychophysical experiments that measure the sensitivity of human observers to different spatio-temporal stimuli across a wide field of view. We use the collected data to build a perceptual model for the visibility of temporal changes at different eccentricities in complex video content. Finally, we discuss, demonstrate, and evaluate several problems that can be addressed using our technique. First, we show how our model enables injecting new content into the periphery without distracting the viewer, and we discuss the link between the model and human attention. Second, we demonstrate how foveated rendering methods can be evaluated and optimized to limit the visibility of temporal aliasing

    Perceptual rasterization for head-mounted display image synthesis

    Get PDF
    We suggest a rasterization pipeline tailored towards the needs of HMDs, where latency and field-of-view requirements pose new challenges beyond those of traditional desktop displays. Instead of image warping for low latency, or using multiple passes for foveation, we show how both can be produced directly in a single perceptual rasterization pass. We do this with per-fragment ray-casting. This is enabled by derivations of tight space-time-fovea pixel bounds, introducing just enough flexibility for the requisite geometric tests, but retaining most of the simplicity and efficiency of the traditional rasterizaton pipeline. To produce foveated images, we rasterize to an image with spatially varying pixel density. To compensate for latency, we extend the image formation model to directly produce "rolling" images where the time at each pixel depends on its display location. Our approach overcomes limitations of warping with respect to disocclusions, object motion and view-dependent shading, as well as geometric aliasing artifacts in other foveated rendering techniques. A set of perceptual user studies demonstrates the efficacy of our approach

    Efficient streaming for high fidelity imaging

    Get PDF
    Researchers and practitioners of graphics, visualisation and imaging have an ever-expanding list of technologies to account for, including (but not limited to) HDR, VR, 4K, 360°, light field and wide colour gamut. As these technologies move from theory to practice, the methods of encoding and transmitting this information need to become more advanced and capable year on year, placing greater demands on latency, bandwidth, and encoding performance. High dynamic range (HDR) video is still in its infancy; the tools for capture, transmission and display of true HDR content are still restricted to professional technicians. Meanwhile, computer graphics are nowadays near-ubiquitous, but to achieve the highest fidelity in real or even reasonable time a user must be located at or near a supercomputer or other specialist workstation. These physical requirements mean that it is not always possible to demonstrate these graphics in any given place at any time, and when the graphics in question are intended to provide a virtual reality experience, the constrains on performance and latency are even tighter. This thesis presents an overall framework for adapting upcoming imaging technologies for efficient streaming, constituting novel work across three areas of imaging technology. Over the course of the thesis, high dynamic range capture, transmission and display is considered, before specifically focusing on the transmission and display of high fidelity rendered graphics, including HDR graphics. Finally, this thesis considers the technical challenges posed by incoming head-mounted displays (HMDs). In addition, a full literature review is presented across all three of these areas, detailing state-of-the-art methods for approaching all three problem sets. In the area of high dynamic range capture, transmission and display, a framework is presented and evaluated for efficient processing, streaming and encoding of high dynamic range video using general-purpose graphics processing unit (GPGPU) technologies. For remote rendering, state-of-the-art methods of augmenting a streamed graphical render are adapted to incorporate HDR video and high fidelity graphics rendering, specifically with regards to path tracing. Finally, a novel method is proposed for streaming graphics to a HMD for virtual reality (VR). This method utilises 360° projections to transmit and reproject stereo imagery to a HMD with minimal latency, with an adaptation for the rapid local production of depth maps

    Koehenkilöiden suorituskykymittaukset: kuvataajuuden kasvattaminen ja latenssin kompensointi käyttäen kuvapohjaista renderöintia

    Get PDF
    Traditionally in computer graphics complex 3D scenes are represented as a collection of more primitive geometric surfaces. The geometric representation is then rendered into a 2D raster image suitable for display devices. Image based rendering is an interesting addition to a geometry based rendering. Performance is constrained only by display resolution, and not by scene geometry complexity or shader complexity. When used together with a geometry based renderer, an image based renderer can extrapolate additional frames into an animation sequence based on geometrically rendered frames. Existing research into image based rendering methods is investigated in context of interactive computer graphics. Also an image based renderer is implemented to run on a modern GPU shader architecture. Finally, it’s used in a first person shooter game experiment to measure task performance when using frame rate upconversion. Image based rendering is found to be promising for frame rate upconversion as well as for latency compensation. An implementation of an image based renderer is found feasible on modern GPUs. The experiment results show considerable improvement in test subject hit rates when using frame rate upconversion with latency compensation.Perinteisesti tietokonegrafiikassa monimutkaiset kolmiulotteiset maisemat kuvaillaan yksinkertaisempien geometristen pintojen kokoelmana. Geometrisesta kuvauksesta renderöidään kaksiulotteinen näyttöille sopiva rasterikuva. Kuvapohjainen renderöinti on mielenkiintoinen lisäys geometriapohjaisen renderöinnin rinnalle. Suorituskyky ei riipu virtuaalimaiseman geometrisestä monimutkaisuudesta tai varjostustehosteiden raskaudesta, vaan ainoastaan näytön erottelukyvystä. Yhdessä geometriapohjaisen renderöinnin kanssa käytettynä kuvapohjainen renderöija voi ekstrapoloida uusia kuvia animaatiosekvenssiin vanhojen tavallisesti renderöitujen kuvien perusteella. Kuvapohjaista renderöintia tutkitaan vuorovaikutteisen tietokonegrafiikan näkökulmasta olemassa olevan kirjallisuuden pohjalta. Lisäksi toteutetaan kuvapohjainen renderöija nykyaikaisille grafiikkasuorittimille. Lopuksi toteutetaan käyttäjäkoe käyttäen kuvapohjaista renderöijaa kuvataajuuden kasvattamiseksi, jossa koehenkilöiden suorituskykyä mitataan ammuskelupelissä. Kuvapohjainen renderöinti todetaan lupaavaksi keinoksi kuvataajuuden kasvattamiseksi ja latenssin kompensointiin. Kuvapohjaisen renderöijan toteuttaminen nykyaikaiselle grafiikkasuorittimille todetaan mahdolliseksi. Käyttäjäkokeen tulokset osoittavat, että koehenkilöiden osumatarkkuus koheni merkittävästi kun käytettiin kuvataajuuden kasvattamista ja latenssin kompensointia
    corecore