3 research outputs found

    PeptiCKDdb-peptide- and protein-centric database for the investigation of genesis and progression of chronic kidney disease

    Get PDF
    The peptiCKDdb is a publicly available database platform dedicated to support research in the field of chronic kidney disease (CKD) through identification of novel biomarkers and molecular features of this complex pathology. PeptiCKDdb collects peptidomics and proteomics datasets manually extracted from published studies related to CKD. Datasets from peptidomics or proteomics, human case/control studies on CKD and kidney or urine profiling were included. Data from 114 publications (studies of body fluids and kidney tissue: 26 peptidomics and 76 proteomics manuscripts on human CKD, and 12 focusing on healthy proteome profiling) are currently deposited and the content is quarterly updated. Extracted datasets include information about the experimental setup, clinical study design, discovery-validation sample sizes and list of differentially expressed proteins (P-value < 0.05). A dedicated interactive web interface, equipped with multiparametric search engine, data export and visualization tools, enables easy browsing of the data and comprehensive analysis. In conclusion, this repository might serve as a source of data for integrative analysis or a knowledgebase for scientists seeking confirmation of their findings and as such, is expected to facilitate the modeling of molecular mechanisms underlying CKD and identification of biologically relevant biomarkers.Database URL: www.peptickddb.com

    Identification of novel molecular signatures of IgA nephropathy through an integrative -omics analysis

    Get PDF
    IgA nephropathy (IgAN) is the most prevalent among primary glomerular diseases worldwide. Although our understanding of IgAN has advanced significantly, its underlying biology and potential drug targets are still unexplored. We investigated a combinatorial approach for the analysis of IgAN-relevant -omics data, aiming at identification of novel molecular signatures of the disease. Nine published urinary proteomics datasets were collected and the reported differentially expressed proteins in IgAN vs. healthy controls were integrated into known biological pathways. Proteins participating in these pathways were subjected to multi-step assessment, including investigation of IgAN transcriptomics datasets (Nephroseq database), their reported protein-protein interactions (STRING database), kidney tissue expression (Human Protein Atlas) and literature mining. Through this process, from an initial dataset of 232 proteins significantly associated with IgAN, 20 pathways were predicted, yielding 657 proteins for further analysis. Step-wise evaluation highlighted 20 proteins of possibly high relevance to IgAN and/or kidney disease. Experimental validation of 3 predicted relevant proteins, adenylyl cyclase-associated protein 1 (CAP1), SHC-transforming protein 1 (SHC1) and prolylcarboxypeptidase (PRCP) was performed by immunostaining of human kidney sections. Collectively, this study presents an integrative procedure for -omics data exploitation, giving rise to biologically relevant results
    corecore