294 research outputs found

    2D multi-objective placement algorithm for free-form components

    Get PDF
    This article presents a generic method to solve 2D multi-objective placement problem for free-form components. The proposed method is a relaxed placement technique combined with an hybrid algorithm based on a genetic algorithm and a separation algorithm. The genetic algorithm is used as a global optimizer and is in charge of efficiently exploring the search space. The separation algorithm is used to legalize solutions proposed by the global optimizer, so that placement constraints are satisfied. A test case illustrates the application of the proposed method. Extensions for solving the 3D problem are given at the end of the article.Comment: ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, San Diego : United States (2009

    Fast Penetration Depth Estimation for Elastic Bodies

    Get PDF
    We present a fast penetration depth estimation algorithm between deformable polyhedral objects. We assume the continuum of non-rigid models are discretized using standard techniques, such as finite element or finite difference methods. As the objects deform, the pre-computed distance fields are deformed accordingly to estimate penetration depth, allowing enforcement of non-penetration constraints between two colliding elastic bodies. This approach can automatically handle self-penetration and inter-penetration in a uniform manner. We demonstrate its effectiveness on moderately complex simulation scenes

    Trajectory planning with task constraints in densely filled environments

    Get PDF
    In this paper the problem of computing a rigid object trajectory in an environment populated with deformable objects is addressed. The problem arises in Minimally Invasive Robotic Surgery (MIRS) from the needs of reaching a point of interest inside the anatomy with rigid laparoscopic instruments. We address the case of abdominal surgery. The abdomen is a densely populated soft environment and it is not possible to apply classical techniques for obstacle avoidance because a collision free solution is, most of the time, not feasible. In order to have a convergent algorithm with, at least, one possible solution we have to relax the constraints and allow collision under a specific contact threshold to avoid tissue damaging. In this work a new approach for trajectory planning under these peculiar conditions is implemented. The method computes offline the path which is then tested in a surgical simulator as part of a pre-operative surgical plan

    A method for dense packing discovery

    Full text link
    The problem of packing a system of particles as densely as possible is foundational in the field of discrete geometry and is a powerful model in the material and biological sciences. As packing problems retreat from the reach of solution by analytic constructions, the importance of an efficient numerical method for conducting \textit{de novo} (from-scratch) searches for dense packings becomes crucial. In this paper, we use the \textit{divide and concur} framework to develop a general search method for the solution of periodic constraint problems, and we apply it to the discovery of dense periodic packings. An important feature of the method is the integration of the unit cell parameters with the other packing variables in the definition of the configuration space. The method we present led to improvements in the densest-known tetrahedron packing which are reported in [arXiv:0910.5226]. Here, we use the method to reproduce the densest known lattice sphere packings and the best known lattice kissing arrangements in up to 14 and 11 dimensions respectively (the first such numerical evidence for their optimality in some of these dimensions). For non-spherical particles, we report a new dense packing of regular four-dimensional simplices with density ϕ=128/2190.5845\phi=128/219\approx0.5845 and with a similar structure to the densest known tetrahedron packing.Comment: 15 pages, 5 figure

    Reachability-based Trajectory Design with Neural Implicit Safety Constraints

    Full text link
    Generating safe motion plans in real-time is a key requirement for deploying robot manipulators to assist humans in collaborative settings. In particular, robots must satisfy strict safety requirements to avoid self-damage or harming nearby humans. Satisfying these requirements is particularly challenging if the robot must also operate in real-time to adjust to changes in its environment.This paper addresses these challenges by proposing Reachability-based Signed Distance Functions (RDFs) as a neural implicit representation for robot safety. RDF, which can be constructed using supervised learning in a tractable fashion, accurately predicts the distance between the swept volume of a robot arm and an obstacle. RDF's inference and gradient computations are fast and scale linearly with the dimension of the system; these features enable its use within a novel real-time trajectory planning framework as a continuous-time collision-avoidance constraint. The planning method using RDF is compared to a variety of state-of-the-art techniques and is demonstrated to successfully solve challenging motion planning tasks for high-dimensional systems faster and more reliably than all tested methods

    Minkowski Sum Construction and other Applications of Arrangements of Geodesic Arcs on the Sphere

    Full text link
    We present two exact implementations of efficient output-sensitive algorithms that compute Minkowski sums of two convex polyhedra in 3D. We do not assume general position. Namely, we handle degenerate input, and produce exact results. We provide a tight bound on the exact maximum complexity of Minkowski sums of polytopes in 3D in terms of the number of facets of the summand polytopes. The algorithms employ variants of a data structure that represents arrangements embedded on two-dimensional parametric surfaces in 3D, and they make use of many operations applied to arrangements in these representations. We have developed software components that support the arrangement data-structure variants and the operations applied to them. These software components are generic, as they can be instantiated with any number type. However, our algorithms require only (exact) rational arithmetic. These software components together with exact rational-arithmetic enable a robust, efficient, and elegant implementation of the Minkowski-sum constructions and the related applications. These software components are provided through a package of the Computational Geometry Algorithm Library (CGAL) called Arrangement_on_surface_2. We also present exact implementations of other applications that exploit arrangements of arcs of great circles embedded on the sphere. We use them as basic blocks in an exact implementation of an efficient algorithm that partitions an assembly of polyhedra in 3D with two hands using infinite translations. This application distinctly shows the importance of exact computation, as imprecise computation might result with dismissal of valid partitioning-motions.Comment: A Ph.D. thesis carried out at the Tel-Aviv university. 134 pages long. The advisor was Prof. Dan Halperi
    corecore