53,267 research outputs found

    Resource Allocation for Energy-Efficient Device-to-Device Communication in 4G Networks

    Full text link
    Device-to-device (D2D) communications as an underlay of a LTE-A (4G) network can reduce the traffic load as well as power consumption in cellular networks by way of utilizing peer-to-peer links for users in proximity of each other. This would enable other cellular users to increment their traffic, and the aggregate traffic for all users can be significantly increased without requiring additional spectrum. However, D2D communications may increase interference to cellular users (CUs) and force CUs to increase their transmit power levels in order to maintain their required quality-of-service (QoS). This paper proposes an energy-efficient resource allocation scheme for D2D communications as an underlay of a fully loaded LTE-A (4G) cellular network. Simulations show that the proposed scheme allocates cellular uplink resources (transmit power and channel) to D2D pairs while maintaining the required QoS for D2D and cellular users and minimizing the total uplink transmit power for all users.Comment: 2014 7th International Symposium on Telecommunications (IST'2014

    The Development of a Mobile Ad-Hoc Network Testbed: Modular Implementation of Ad-Hoc On-Demand Distance Vector Routing

    Get PDF
    In communication systems, a Mobile Ad-Hoc Network (MANET) is a communication topology that has no central infrastructure, in contrast to more common network topologies such as Wi-fi or cellular towers. MANETs are of particular interest in the field as Internet-of-Things (IOT) applications and the push towards 6th-generation (6G) communications continues. MANET networks provide communication access to all nodes within the network using peer-to-peer communications, requiring extensive maintenance and updating of routes within the network as nodes move around. Routing protocols must be designed and used for these networks, and are typically complex algorithms that are difficult to implement on hardware. To combat this, this work presents a MANET testbed, designed to provide users with an Application Programming Interface (API) that separates routing protocol implementation from operating system functionality. To verify the testbed, this work also presents an implementation of Ad-Hoc On-Demand Distance Vector Routing (AODV) that uses the provided API functions. By comparing simulation results from Network Simulator 3 (NS3), a physical implementation, and a physical implementation that uses firewall capabilities to form the network, a full evaluation of AODV and the MANET testbed is performed

    Open source software radio platform for research on cellular networked UAVs: It works!

    Get PDF
    Cellular network-connected unmanned aerial vehicles (UAVs) experience different radio propagation conditions than radio nodes on the ground. Therefore, it has become critical to investigate the performance of aerial radios, both theoretically and through field trials. In this article, we consider low-altitude aerial nodes that are served by an experimental cellular network. We provide a detailed description of the hardware and software components needed to establish a broadband wireless testbed for UAV communications research using software radios. Results show that a testbed for innovation in UAV communications and networking is feasible with commercial off-the-shelf hardware, open source software, and low-power signaling.This work was in part supported by NSF award CNS-1939334.Peer ReviewedPostprint (author's final draft

    A Novel Device-to-Device Discovery Scheme for Underlay Cellular Networks

    Full text link
    Tremendous growing demand for high data rate services such as video, gaming and social networking in wireless cellular systems, attracted researchers' attention to focus on developing proximity services. In this regard, device-to-device (D2D) communications as a promising technology for future cellular systems, plays crucial rule. The key factor in D2D communication is providing efficient peer discovery mechanisms in ultra dense networks. In this paper, we propose a centralized D2D discovery scheme by employing a signaling algorithm to exchange D2D discovery messages between network entities. In this system, potential D2D pairs share uplink cellular users' resources with collision detection, to initiate a D2D links. Stochastic geometry is used to analyze system performance in terms of success probability of the transmitted signal and minimum required time slots for the proposed discovery scheme. Extensive simulations are used to evaluate the proposed system performance.Comment: Accepted for publication in 25'th Iranian Conference on Electrical Engineering (ICEE2017

    Offloading cellular traffic through opportunistic communications: analysis and optimization

    Get PDF
    Offloading traffic through opportunistic communications has been recently proposed as a way to relieve the current overload of cellular networks. Opportunistic communication can occur when mobile device users are (temporarily) in each other's proximity, such that the devices can establish a local peer-to-peer connection (e.g., via WLAN or Bluetooth). Since opportunistic communication is based on the spontaneous mobility of the participants, it is inherently unreliable. This poses a serious challenge to the design of any cellular offloading solutions, that must meet the applications' requirements. In this paper, we address this challenge from an optimization analysis perspective, in contrast to the existing heuristic solutions. We first model the dissemination of content (injected through the cellular interface) in an opportunistic network with heterogeneous node mobility. Then, based on this model, we derive the optimal content injection strategy, which minimizes the load of the cellular network while meeting the applications' constraints. Finally, we propose an adaptive algorithm based on control theory that implements this optimal strategy without requiring any data on the mobility patterns or the mobile nodes' contact rates. The proposed approach is extensively evaluated with both a heterogeneous mobility model as well as real-world contact traces, showing that it substantially outperforms previous approaches proposed in the literature.This work has been sponsored by the HyCloud project, supported by Microsoft Innovation Cluster for Embedded Software (ICES), and by the EU H2020-ICT-2014-2 Flex5Gware project, no. 671563

    Evolution of cooperation in device-to-device communication

    Get PDF
    Device-to-device (D2D) communications are a promising paradigm to improve spectral efficiency in cellular wireless networks by enabling peer to peer communication. In particular, short D2D links can be used to relay data to reduce the burden on core infrastructure. However, this relies on some mechanism to either enforce or incentivise nodes to donate their resources in order to act as a relay without any guarantee that this will be reciprocated in the future. Indirect reciprocity has been well studied from the perspective of human behaviour, proposing mechanisms and conditions under which such behaviour naturally evolves. In this paper we consider D2D networks that formulate the decision to share resources as a donation game using a model of social comparison and examine the conditions under which cooperation evolves without the need for a central authority. Experimentation shows that the emergence of cooperation is sensitive to network conditions, such as node density and noise

    Architecture and evaluation of a unified V2V and V2I communication system based on cellular networks

    Get PDF
    Vehicle communications are becoming the cornerstone in the future vehicle equipment. More specifically, vehicle to vehicle communications (V2V) are the main object of researching nowadays, because vehicle to infrastructure (V2I) approximations are already being developed as commercial solutions. Cellular networks (CN) are usually applied in V2I solutions, whereas ad hoc networks are practically the only technology considered in V2V communications. Due to fact that CN are currently a reality and the operators are continuously improving the network, this communication technology could be considered as a candidate to deal with V2V necessities as well. The present paper defends the applicability of CN in the V2V field, and presents a novel communication paradigm for vehicles which unifies both V2V and V2I paradigms into one system. A peer to peer network technology has been used over the CN basis to create a group-based communication infrastructure which enables the message propagation among vehicles and between the car and the road side infrastructure. The architecture has been implemented in both hardware and software terms, and multitude of field tests have been carried out, whose main performance results are shown in the paper.The authors would like to thank the Spanish Ministerio the Educacion y Ciencia for sponsoring the research activities under the grant AP2005-1437, in frames of the FPU program, and to the financial support given by the European Spatial Agency (ESA) under the GIROADS 332599 project. Special thanks as well to the Spanish Ministerio the Fomento for its continuous support in vehicular researching
    corecore