39,128 research outputs found

    Context-aware collaborative storage and programming for mobile users

    Get PDF
    Since people generate and access most digital content from mobile devices, novel innovative mobile apps and services are possible. Most people are interested in sharing this content with communities defined by friendship, similar interests, or geography in exchange for valuable services from these innovative apps. At the same time, they want to own and control their content. Collaborative mobile computing is an ideal choice for this situation. However, due to the distributed nature of this computing environment and the limited resources on mobile devices, maintaining content availability and storage fairness as well as providing efficient programming frameworks are challenging. This dissertation explores several techniques to improve these shortcomings of collaborative mobile computing platforms. First, it proposes a medley of three techniques into one system, MobiStore, that offers content availability in mobile peer-to-peer networks: topology maintenance with robust connectivity, structural reorientation based on the current state of the network, and gossip-based hierarchical updates. Experimental results showed that MobiStore outperforms a state-of-the-art comparison system in terms of content availability and resource usage fairness. Next, the dissertation explores the usage of social relationship properties (i.e., network centrality) to improve the fairness of resource allocation for collaborative computing in peer-to-peer online social networks. The challenge is how to provide fairness in content replication for P2P-OSN, given that the peers in these networks exchange information only with one-hop neighbors. The proposed solution provides fairness by selecting the peers to replicate content based on their potential to introduce the storage skewness, which is determined from their structural properties in the network. The proposed solution, Philia, achieves higher content availability and storage fairness than several comparison systems. The dissertation concludes with a high-level distributed programming model, which efficiently uses computing resources on a cloud-assisted, collaborative mobile computing platform. This platform pairs mobile devices with virtual machines (VMs) in the cloud for increased execution performance and availability. On such a platform, two important challenges arise: first, pairing the two computing entities into a seamless computation, communication, and storage unit; and second, using the computing resources in a cost-effective way. This dissertation proposes Moitree, a distributed programming model and middleware that translates high-level programming constructs into events and provides the illusion of a single computing entity over the mobile-VM pairs. From programmers’ viewpoint, the Moitree API models user collaborations into dynamic groups formed over location, time, or social hierarchies. Experimental results from a prototype implementation show that Moitree is scalable, suitable for real-time apps, and can improve the performance of collaborating apps regarding latency and energy consumption

    Reconsidering big data security and privacy in cloud and mobile cloud systems

    Get PDF
    Large scale distributed systems in particular cloud and mobile cloud deployments provide great services improving people\u27s quality of life and organizational efficiency. In order to match the performance needs, cloud computing engages with the perils of peer-to-peer (P2P) computing and brings up the P2P cloud systems as an extension for federated cloud. Having a decentralized architecture built on independent nodes and resources without any specific central control and monitoring, these cloud deployments are able to handle resource provisioning at a very low cost. Hence, we see a vast amount of mobile applications and services that are ready to scale to billions of mobile devices painlessly. Among these, data driven applications are the most successful ones in terms of popularity or monetization. However, data rich applications expose other problems to consider including storage, big data processing and also the crucial task of protecting private or sensitive information. In this work, first, we go through the existing layered cloud architectures and present a solution addressing the big data storage. Secondly, we explore the use of P2P Cloud System (P2PCS) for big data processing and analytics. Thirdly, we propose an efficient hybrid mobile cloud computing model based on cloudlets concept and we apply this model to health care systems as a case study. Then, the model is simulated using Mobile Cloud Computing Simulator (MCCSIM). According to the experimental power and delay results, the hybrid cloud model performs up to 75% better when compared to the traditional cloud models. Lastly, we enhance our proposals by presenting and analyzing security and privacy countermeasures against possible attacks

    Overlay Networks for Edge Management

    Get PDF
    Experiments presented in this paper were carried out using the Grid'5000 testbed, supported by a scientific interest group hosted by Inria and including CNRS, RENATER and several Universities as well as other organizations (see https://www.grid5000.fr).Edge computing has emerged as a solution to address existing limitations of cloud computing for bandwidth-heavy and time-sensitive applications, by moving (some) computations from bandwidth saturated Cloud infrastructures closer to client devices, where data is effectively produced and consumed. However, existing materializations of the edge computing paradigm take limited advantage of computational and storage power that exists in the edge and between client devices and the cloud. Most of these leverage static hierarchical topologies (e.g., Fog Computing) to pre-process data before sending it to the Cloud, which limits the advantages that can be extracted from the edge computing paradigm. In the past, peer-to-peer systems have sought to tackle the challenges of increasing scalability and availability for very large systems, with a large number of solutions being proposed namely, distributed overlay networks for resource management. In this paper, we argue that the clever adaptation of peer-to-peer solutions can enable novel applications to fully exploit the potential of the edge. In particular, we study the viability of taking advantage of specialized overlay networks in edge environments to enable the management of a large number of computational resources. Contrary to previous proposals, that assume the environment to be composed of mostly homogeneous devices, our proposal embraces existing heterogeneity and exploits the location of computational resources to devise a (partially) self-organizing overlay network that can be exploited both to provide membership information to applications, but also do efficiently disseminate management information across edge devices. We have conducted an experimental evaluation using container-based emulation in an heterogeneous network composed by 100 devices, with results showing that our protocol is able to maximize the bandwidth usage of the system, allowing more data to flow throughout the network, while retaining high robustness to failures.authorsversionpublishe

    Community Trust Stores for Peer-to-Peer e-Commerce Applications

    Get PDF
    • …
    corecore