90 research outputs found

    A Novel Approach to Finding Near-Cliques: The Triangle-Densest Subgraph Problem

    Full text link
    Many graph mining applications rely on detecting subgraphs which are near-cliques. There exists a dichotomy between the results in the existing work related to this problem: on the one hand the densest subgraph problem (DSP) which maximizes the average degree over all subgraphs is solvable in polynomial time but for many networks fails to find subgraphs which are near-cliques. On the other hand, formulations that are geared towards finding near-cliques are NP-hard and frequently inapproximable due to connections with the Maximum Clique problem. In this work, we propose a formulation which combines the best of both worlds: it is solvable in polynomial time and finds near-cliques when the DSP fails. Surprisingly, our formulation is a simple variation of the DSP. Specifically, we define the triangle densest subgraph problem (TDSP): given G(V,E)G(V,E), find a subset of vertices SS^* such that τ(S)=maxSVt(S)S\tau(S^*)=\max_{S \subseteq V} \frac{t(S)}{|S|}, where t(S)t(S) is the number of triangles induced by the set SS. We provide various exact and approximation algorithms which the solve the TDSP efficiently. Furthermore, we show how our algorithms adapt to the more general problem of maximizing the kk-clique average density. Finally, we provide empirical evidence that the TDSP should be used whenever the output of the DSP fails to output a near-clique.Comment: 42 page

    FLEET: Butterfly Estimation from a Bipartite Graph Stream

    Full text link
    We consider space-efficient single-pass estimation of the number of butterflies, a fundamental bipartite graph motif, from a massive bipartite graph stream where each edge represents a connection between entities in two different partitions. We present a space lower bound for any streaming algorithm that can estimate the number of butterflies accurately, as well as FLEET, a suite of algorithms for accurately estimating the number of butterflies in the graph stream. Estimates returned by the algorithms come with provable guarantees on the approximation error, and experiments show good tradeoffs between the space used and the accuracy of approximation. We also present space-efficient algorithms for estimating the number of butterflies within a sliding window of the most recent elements in the stream. While there is a significant body of work on counting subgraphs such as triangles in a unipartite graph stream, our work seems to be one of the few to tackle the case of bipartite graph streams.Comment: This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Seyed-Vahid Sanei-Mehri, Yu Zhang, Ahmet Erdem Sariyuce and Srikanta Tirthapura. "FLEET: Butterfly Estimation from a Bipartite Graph Stream". The 28th ACM International Conference on Information and Knowledge Managemen

    Evaluating the effects of high-throughput structural neuroimaging predictors on whole-brain functional connectome outcomes via network-based vector-on-matrix regression

    Full text link
    The joint analysis of multimodal neuroimaging data is critical in the field of brain research because it reveals complex interactive relationships between neurobiological structures and functions. In this study, we focus on investigating the effects of structural imaging (SI) features, including white matter micro-structure integrity (WMMI) and cortical thickness, on the whole brain functional connectome (FC) network. To achieve this goal, we propose a network-based vector-on-matrix regression model to characterize the FC-SI association patterns. We have developed a novel multi-level dense bipartite and clique subgraph extraction method to identify which subsets of spatially specific SI features intensively influence organized FC sub-networks. The proposed method can simultaneously identify highly correlated structural-connectomic association patterns and suppress false positive findings while handling millions of potential interactions. We apply our method to a multimodal neuroimaging dataset of 4,242 participants from the UK Biobank to evaluate the effects of whole-brain WMMI and cortical thickness on the resting-state FC. The results reveal that the WMMI on corticospinal tracts and inferior cerebellar peduncle significantly affect functional connections of sensorimotor, salience, and executive sub-networks with an average correlation of 0.81 (p<0.001).Comment: 20 pages, 5 figures, 2 table

    Parallel Algorithms for Hierarchical Nucleus Decomposition

    Full text link
    Nucleus decompositions have been shown to be a useful tool for finding dense subgraphs. The coreness value of a clique represents its density based on the number of other cliques it is adjacent to. One useful output of nucleus decomposition is to generate a hierarchy among dense subgraphs at different resolutions. However, existing parallel algorithms for nucleus decomposition do not generate this hierarchy, and only compute the coreness values. This paper presents a scalable parallel algorithm for hierarchy construction, with practical optimizations, such as interleaving the coreness computation with hierarchy construction and using a concurrent union-find data structure in an innovative way to generate the hierarchy. We also introduce a parallel approximation algorithm for nucleus decomposition, which achieves much lower span in theory and better performance in practice. We prove strong theoretical bounds on the work and span (parallel time) of our algorithms. On a 30-core machine with two-way hyper-threading on real-world graphs, our parallel hierarchy construction algorithm achieves up to a 58.84x speedup over the state-of-the-art sequential hierarchy construction algorithm by Sariyuce et al. and up to a 30.96x self-relative parallel speedup. On the same machine, our approximation algorithm achieves a 3.3x speedup over our exact algorithm, while generating coreness estimates with a multiplicative error of 1.33x on average

    On the Generalized Mean Densest Subgraph Problem: Complexity and Algorithms

    Full text link
    Dense subgraph discovery is an important problem in graph mining and network analysis with several applications. Two canonical problems here are to find a maxcore (subgraph of maximum min degree) and to find a densest subgraph (subgraph of maximum average degree). Both of these problems can be solved in polynomial time. Veldt, Benson, and Kleinberg [VBK21] introduced the generalized pp-mean densest subgraph problem which captures the maxcore problem when p=p=-\infty and the densest subgraph problem when p=1p=1. They observed that the objective leads to a supermodular function when p1p \ge 1 and hence can be solved in polynomial time; for this case, they also developed a simple greedy peeling algorithm with a bounded approximation ratio. In this paper, we make several contributions. First, we prove that for any p(18,0)(0,14)p \in (-\frac{1}{8}, 0) \cup (0, \frac{1}{4}) the problem is NP-Hard and for any p(3,0)(0,1)p \in (-3,0) \cup (0,1) the weighted version of the problem is NP-Hard, partly resolving a question left open in [VBK21]. Second, we describe two simple 1/21/2-approximation algorithms for all p<1p < 1, and show that our analysis of these algorithms is tight. For p>1p > 1 we develop a fast near-linear time implementation of the greedy peeling algorithm from [VBK21]. This allows us to plug it into the iterative peeling algorithm that was shown to converge to an optimum solution [CQT22]. We demonstrate the efficacy of our algorithms by running extensive experiments on large graphs. Together, our results provide a comprehensive understanding of the complexity of the pp-mean densest subgraph problem and lead to fast and provably good algorithms for the full range of pp

    The K-clique Densest Subgraph Problem

    Full text link
    Numerous graph mining applications rely on detecting sub-graphs which are large near-cliques. Since formulations that are geared towards finding large near-cliques are NP-hard and frequently inapproximable due to connections with the Maximum Clique problem, the poly-time solvable densest subgraph problem which maximizes the average degree over all possible subgraphs “lies at the core of large scale data mining”[10]. However, frequently the densest subgraph prob-lem fails in detecting large near-cliques in networks. In this work, we introduce the k-clique densest subgraph problem, k ≥ 2. This generalizes the well studied dens-est subgraph problem which is obtained as a special case for k = 2. For k = 3 we obtain a novel formulation which we refer to as the triangle densest subgraph problem: given a graph G(V,E), find a subset of vertices S ∗ such that τ(S∗) = max S⊆V t(S

    Faster Subgraph Counting in Sparse Graphs

    Get PDF
    A fundamental graph problem asks to compute the number of induced copies of a k-node pattern graph H in an n-node graph G. The fastest algorithm to date is still the 35-years-old algorithm by Nesetril and Poljak [Nesetril and Poljak, 1985], with running time f(k) * O(n^{omega floor[k/3] + 2}) where omega <=2.373 is the matrix multiplication exponent. In this work we show that, if one takes into account the degeneracy d of G, then the picture becomes substantially richer and leads to faster algorithms when G is sufficiently sparse. More precisely, after introducing a novel notion of graph width, the DAG-treewidth, we prove what follows. If H has DAG-treewidth tau(H) and G has degeneracy d, then the induced copies of H in G can be counted in time f(d,k) * O~(n^{tau(H)}); and, under the Exponential Time Hypothesis, no algorithm can solve the problem in time f(d,k) * n^{o(tau(H)/ln tau(H))} for all H. This result characterises the complexity of counting subgraphs in a d-degenerate graph. Developing bounds on tau(H), then, we obtain natural generalisations of classic results and faster algorithms for sparse graphs. For example, when d=O(poly log(n)) we can count the induced copies of any H in time f(k) * O~(n^{floor[k/4] + 2}), beating the Nesetril-Poljak algorithm by essentially a cubic factor in n
    corecore